PSI - Issue 72
José A.F.O. Correia / Procedia Structural Integrity 72 (2025) 547–556
556
Acknowledgements This research was supported by: project grant (PTDC/ECI-EST/30103/2017) FiberBridge - Fatigue strengthening and assessment of railway metallic bridges using fiber-reinforced polymers by FEDER funds through COMPETE2020 (POCI) and by national funds (PIDDAC) through the Portuguese Science Foundation (FCT/MCTES); UID/04708 of the CONSTRUCT - Instituto de I&D em Estruturas e Construções - funded by Fundação para a Ciência e a Tecnologia, I.P./ MCTES through the national funds. José Correia would like to thank the individual project grant (2020.03856.CEECIND) awarded by national funds (PIDDAC) through the Portuguese Science Foundation (FCT/MCTES). Additionally, the author would like to thank the institutions – University of Porto (FEUP), Institute for Sustainable Construction (ICS), and Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI) - for the support that allowed the development of a large part of the scientific work presented. References Aeran, A., Siriwardane, S.C., 2017. Ove Mikkelsen, Ivar Langen. A new nonlinear fatigue damage model based only on S - N curve parameters. International Journal of Fatigue, 103, p. 327 - 341. Castillo, E., Fernández - Canteli, A., 2009. A Unified Statistical Methodology for Modeling Fatigue Damage. Springer. Chen, H., Yang, F., Wu, Z., Yang, B., Huo, J., 2023. A nonlinear fatigue damage accumulation model under variable amplitude loading considering the loading sequence effect. International Journal of Fatigue, 177, 107945. Correia, J.A.F.O., De Jesus, A.M.P., Fernández - Canteli, A., Calçada, R.A.B., 2015. Fatigue Damage Assessment of a Riveted Connection Made of Puddle Iron from the Fão Bridge using the Modified Probabilistic Interpretation Technique, Procedia Engineering, 114, 760 - 767. Correia, J.A.F.O., Balsón, S., De Jesus, A.M.P., Fernandez - Canteli, A., Calçada, R.A.B., 2016. A probabilistic analysis of Miner's law for different loading conditions, Structural Engineering and Mechanics, 60:1, 71 - 90. Correia, J.A.F.O., Apetre, N., Arcari, A., De Jesus, A.M.P., Muñiz - Calvente, M., Calçada, R., Berto, F., Fernández - Canteli, A., 2017. Generalized probabilistic model allowing for complex fatigue damage variables, International Journal of Fatigue, 100, Part 1, 187 - 194. Correia, J.A.F.O., De Jesus, A.M.P., Blasón, S., Calvente, M., Fernández - Canteli, A., 2016. Probabilistic Non - Linear Cumulative Fatigue Damage of the P355NL1 Pressure Vessel Steel, Paper No. PVP2016 - 63920, pp. V06AT06A034; 8 pages. Correia, J.A.F.O., De Jesus, A.M.P., 2025. Introduction to Fatigue. Fatigue of Materials and Structures Physics and Data Science, pp. 1 - 34. Dias, J.P., Ekwaro - Osire, S., Americo Cunha Jr., A., Dabetwar, S., Nispel, A., Alemayehu, F.M., Endeshaw, H.B., 2019. Ove Mikkelsen, Ivar Langen. Parametric probabilistic approach for cumulative fatigue damage using double linear damage rule considering limited data. International Journal of Fatigue, 127, p. 246 - 258. Fernández - Canteli, A., Blasón, S., Correia, J.A.F.O., De Jesus, A.M.P., 2014. A probabilistic interpretation of the miner number for fatigue life prediction, Frattura ed Integrita Strutturale, 30, 327 - 339. Grover, H.J., 1960. An Observation Concerning the Cycle Ratio 1n Cumulative Damage. Fatigue of Aircraft Structures. ASTH STP 274, ASTH, Philadelphia, p. 120 - 124. Huffman, P.J. and Beckman, S.P., 2013. A non - linear damage accumulation fatigue model for predicting strain life at variable amplitude loadings based on constant amplitude fatigue data, International Journal of Fatigue, 48, 165–169. Langer, B.F., 1937, Fatigue Failure from Stress Cycles of Varying Amplitude, Journal of Applied Mechanics. 59, A160 - A162. Manson, S.S. and Halford, G.R., 1981. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage, International Journal of Fracture, 17:2, 169 - 192. Marco, S.M. and Starkey, W.L., 1954. A concept of fatigue damage. Transactions of the ASME, 76, 627 - 632. Miner, M.A., 1945. Cumulative damage in fatigue, Journal of Applied Mechanics, 67, A 159 - A 164. Palmgren, A.G., 1924. Die Lebensdauer von Kugellagern (Life Length of Roller Bearings or Durability of Ball Bearings). Zeitschrift des Vereines Deutscher Ingenieure (ZVDI), 14, 339 - 341. Rege, K., Dimitrios G. Pavlou, D.G., 2017. A one - parameter nonlinear fatigue damage accumulation model. International Journal of Fatigue, 98, p. 234 - 246. Schijve J., 2005. Statistical distribution functions and fatigue of structures. International Journal of Fatigue, 27, p.1031 - 1039. Pinto, H., De Jesus, A.M.P., Fernández - Canteli, A., Castillo, E., Pereira, H.F.S.G., 2010. Analysis of Constant and Variable Amplitude Strain - Life Data Using a Novel Probabilistic Weibull Regression Model. Journal of Pressure Vessels Technology, 132(6), 061401. Yu, Y., Wang, L., Wu, J., Chang, S., Zhang, X., 2025. An enhanced nonlinear fatigue cumulative damage model based on toughness exhaustion and strength degradation. International Journal of Fatigue, 198, 109025. Zhao, Y.X., Yang, B., Feng, M.F., Wang, H., 2009. Probabilistic fatigue S - N curves including the super‑long life regime of a railway axle steel. International Journal of Fatigue, 31, p. 1550 - 1558.
Made with FlippingBook Annual report maker