PSI - Issue 72

Ruhit Bardhan et al. / Procedia Structural Integrity 72 (2025) 507–519

516

C 4 C 5 C 6 C 7 C 8

C 4 C 5 C 6 C 7 C 8

0.75 0.65 0.25 0.20 0.40

0.15 0.25 0.15 0.20 0.20 0.15 0.20 0.10 0.10 0.05 0.20 0.15 0.20

0.20 0.20 0.70 0.75 0.55 0.20 0.25 0.20 0.15 0.10 0.40 0.40 0.30 F ij

0.70 0.75 0.65 0.70 0.75

0.20 0.15 0.15 0.10 0.15

0.20 0.20 0.30 0.25 0.20

Alternative A 5 Criterion T ij I ij 0.75

C C C C C C C C

1 2 3 4 5 6 7 8

0.70 0.75 0.80 0.85 0.50 0.55 0.65

Then using the criteria weights from Table 1, we computed the weighted normalized neutrosophic decision matrix. A portion of the weighted normalized neutrosophic decision matrix is displayed in Table 3.

Table 3. Excerpt of Weighted Normalized Neutrosophic Decision Matrix Criterion T i w j j 1 −( 1 − I ij ) w j 1 −( 1 − F ij ) w j 0.947 0.029 0.040

A A A A

C 1 C 1 C 1 C 1 C 1

Alternative

1 2 4 5

A

0.912 0.970 0.935 0.947

0.040 0.019 0.040 0.029

0.063 0.019 0.051 0.040

3

The neutrosophic positive ideal solution and neutrosophic negative ideal solution as described in the section on the Neutrosophic TOPSIS method for FGM selection, were then ascertained accordingly. The separation measures from the NPIS and NNIS were calculated for each alternative, leading to the final closeness coefficients and rankings shown in Table 4.

S i + S i − C i 0.312 0.688

Table 4. Neutrosophic TOPSIS Results for FGM Selection

A A A A A

Alternative

Rank

1 2 3 4 5

0.688 0.725 0.747 0.648 0.716

3 2 1 5

0.275 0.253 0.352 0.284

0.725 0.747 0.648 0.716

4 Based on the results, the ZrO 2 -NiCoCrAlY FGM ( 3 ) emerged as the most suitable option for the high-temperature aerospace application, followed by the Ti-TiB 2 FGM ( 2 ).

Made with FlippingBook Annual report maker