PSI - Issue 72
Stefan Hildebrand et al. / Procedia Structural Integrity 72 (2025) 520–528
528
Sarand, M.H.J., Misirlioglu, I.B., 2024, A physics-based plasticity study of the mechanism of inhomogeneous strain evolution in dual phase 600 steel. International Journal of Plasticity 174:103918, doi: https://doi.org/10.1016/j.ijplas.2024.103918. Khan, A.S., Huang, S., 1995, Continuum Theory of Plasticity. John Wiley and Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, ISBN 0-471-31043-3. Kingma, D.P., Ba, J., 2014, Adam: A method for stochastic optimization, URL https://arxiv.org/abs/1412.6980. Kollmannsberger, S., 2021, Deep learning in computational mechanics: an introductory course. Studies in computational intelligence. Springer, Cham, URL https://link.springer.com/10.1007/978-3-030-76587-3. Lei, M., Sun, G., Yang, G., Wen, B., 2024, A computational mechanical constitutive modeling method based on thermally-activated microstructural evolution and strengthening mechanisms. International Journal of Plasticity 173: 103881, doi: https://doi.org/10.1016/j. ijplas.2024.103881. Linka, K., Hillgartner, M., Abdolazizi, K.P., Aydin, R.C., Istkov, M., Cyron, C.J., 2021, Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning, Journal of Computational Physics 429:110010, doi: https://doi.org/10.1016/j.jcp.2020.110010. Logarzo, H.J., Capuano, G., Rimoli, J.J., 2021, Smart constitutive laws: Inelastic homogenization through machine learning. Computer Methods in Applied Mechanics and Engineering, 373:113482, doi: https://doi.org/10.1016/j.cma.2020.113482. Lubliner, J., Oliver, J., Oller, S., Oñate, E., 1989, A plastic-damage model for concrete. International Journal of Solids and Structures 25(3):299– 326, doi: https://doi.org/10.1016/0020-7683(89)90050-4. Maia, M.A., Rocha, I.B.C.M., Kovačević, D., van der Meer, F.P., 2024, Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework. Mechanics of Materials 198:105145, doi: https://doi.org/10.1016/j.mechmat.2024. 105145. Masi, F., Stefanou, I., Vannucci,P., Maffi-Berthier, V., 2021, Thermodynamics-based artificial neural networks for constitutive modeling. Journal of the Mechanics and Physics of Solids 147:104277, doi: https://doi.org/10.1016/j.jmps.2020.104277. Miehe, C., Hofacker, M., Welschinger, F., 2010, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199(45):2765–2778, doi: https://doi.org/ É10.1016/j.cma.2010.04.011. Nikolić, F., Čanad̄ija. M., 2024, Machine learning of structure – property relationships: An application to heat generation during plastic deformation. Facta Universitatis, Series: Mechanical Engineering 0(0) Oliveira, D.B., Penna, S.S., 2004, A general framework for finite strain elastoplastic models: a theoretical approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 44:87–116, doi: 10.1007/s40430-022-03647-z. Rabczuk, T., Bathe, K.J., editors, 2023, Machine Learning in Modeling and Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-031-36644-4. doi: https://doi.org/10.1007/978-3-031-36644-4. Rahman, S.M., Hassan, T., Corona, E., 2008, Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure. International Journal of Plasticity 24(10):1756–1791, doi: https://doi.org/10.1016/j.ijplas.2008.02.010. Special Issue in Honor of Jean-Louis Chaboche. Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378: 686–707, doi: https://doi.org/10. 1016/j.jcp.2018.10.045. Raju, V.N.G., Lakshmi, K.P., Jain, V.M., Kalidindi, A., Padma, V., 2020, Study the influence of normalization/transformation process on the accuracy of supervised classification. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), pages 729–735, doi: 10.1109/ICSSIT48917.2020.9214160. Rosenkranz, M., Kalina, K.A., Brummund, J., Kästner, M., 2023, A comparative study on different neural network architectures to model inelasticity. International Journal for Numerical Methods in Engineering 124(21):4802–4840, doi: https://doi.org/10.1002/nme.7319. Sato, S., Kim, M., Ha, J., Korkolis, Y.P., Kuwabara, T., 2023, Cruciform tension-shear test for sheet metal: Evaluation of methods for calculating plastic work. IOP Conference Series.Materials Science and Engineering, 1284(1):012074 Shoghi, R., Hartmaier, A., 2022, Optimal data-generation strategy for machine learning yield functions in anisotropic plasticity. Frontiers in Materials 9,doi: 10.3389/fmats.2022.868248. Shoghi, R., Morand, L., Helm, D., Hartmaier, A., 2024, Optimizing machine learning yield functions using query-by-committee for support vector classification with a dynamic stopping criterion. Computational Mechanics Simo, J.C., Hughes, T.J.R., 1998, Computational Inelasticity, volume 7 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, ISBN 0-387-97520-9. Suchocki, C., 2022, On finite element implementation of cyclic elastoplasticity: theory, coding, and exemplary problems. Acta Mechanica 233:83–120, doi: 10.1007/s00707-021-03069-3. Vacev, T., Zorić, A., Grdić, D., Ristić, N., Grdić, Y., Milić, M., 2023, Experimental and numerical analysis of impact strength of concrete slabs. Periodica Polytechnica Civil Engineering, 67(1):325–335, doi: 10.3311/PPci.21084. Varelis, G.E., 2010, Application of the armstrong - frederick cyclic plasticity model for simulating structural steel member behavior, URL https://core.ac.uk/reader/132821330. Xenos, D.,Grass, P., 2016,. Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model cdpm2. Finite Elements in Analysis and Design 117-118:11–20, doi:https://doi.org/10.1016/j.finel.2016.04.002. Zhang, A., Mohr, D., 2020, Using neural networks to represent von mises plasticity with isotropic hardening. International Journal of Plasticity 132:102732, doi: https://doi.org/10.1016/j.ijplas.2020.102732.
Made with FlippingBook Annual report maker