PSI - Issue 72
Victor Rizov / Procedia Structural Integrity 72 (2025) 128–134
130
where D 1 , D 2 and D 3 are parts of the path, D , in Fig. 1. J stD 1 , J stD 2 and J stD 3 are
i n
1
x u
x v
(4)
cos
,
J
u
p
p
ds
1
0 1
1 D xD i 1
1 yD i
1
stD
D i
D
1
i
1
D
i n
2
x u
x v
,
cos
J
u
p
p
ds
2
0 2
2
2 xD i
2 yD i
2
stD
D i
D
D
1
i
2
D
(5)
i n
3
x u
x v
,
(6)
cos
J
u
p
p
ds
3
0 3
3 D xD i 3
3 yD i
3
stD
D i
D
1
i
3
D
where n 1 , n 2 and n 3 are the numbers of layers in parts, D 1 , D 2 and D 3 , of the path, u 0 D 1i , u 0 D 2i and u 0 D 3i are the specific energies, α D 1 , α D 2 and α D 3 are the inclinations, p xD 1 i , p xD 2 i and p xD 3 i are the longitudinal stresses, p yD 1 i , p yD 2 i and p yD 1 3 are the transversal stresses, u and v are the horizontal and vertical displacements. Equation (7) defines u 0 D 1i .
2 1
(7)
u
,
D i 1
0 1
D i
where
(8)
i D i E 1
n z z 1 1 1
(9)
The curvature, κ 1 , and the coordinate of neutral axis, z 1 n , are determined from the longitudinal force, N , and the bending moment, M , by Eqs. (10) and (11).
1 i i 1 z i 1 1 i n 1 1 1 z i i n z i
N b
1 1 dz
(10)
D i
M b
1 1 1 z dz
(11)
,
D i
1 z i
where (refer to Fig. 1) 0 N ,
(12)
P
(13)
M
a
.
2
Equation (14) is used to define the variation of the modulus of elasticity, Ei, transversally to the layer.
Made with FlippingBook Annual report maker