PSI - Issue 70
Janani P.K. et al. / Procedia Structural Integrity 70 (2025) 525–532
532
This will ensure that PET- SiO₂ modified geopolymer concrete can be effectively applied in real -world construction while further enhancing its performance and sustainability. 5. Conclusion The addition of 4g PET- SiO₂ improved compressive strength by 20% and reduced water absorption by 50%, enhancing the geopolymer matrix's structural integrity. This makes it suitable for marine structures, precast elements, and sustainable construction applications. However, the use of small-scale specimens limits real-world application accuracy. PET- SiO₂ strengthens compressive properties but has similar ductility to the control mix in tensile and flexural tests. Future research should focus on long-term acid resistance, chemical interactions (using FTIR and XRD), and the practical use of PET- SiO₂ -modified geopolymer concrete. References Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A., Van Deventer, J.S.J. (2007). "Geopolymer technology: the current state of the art." Journal of Materials Science, 42(9), 2917-2933. Davidovits, J. (2015). "Geopolymer Chemistry and Applications." Geopolymer Institute, 4th Edition. Mehta, A., Siddique, R. (2017). "An overview of geopolymers derived from industrial by-products." Construction and Building Materials, 127, 183-198. Galiano, Y.L., Yang, K.-H. (2021). "Geopolymer concrete: A comprehensive review of durability properties." Materials, 14(8), 1823. Gao, P., Zhang, Z., Wang, H. (2022). "Durability of alkali-activated materials in chloride environments." Cement and Concrete Research, 156, 106741. Ali, M. K., Al-Kheetan, Y. S. S., & Hamada, A. (2023). "Utilizing polyethylene terephthalate (PET) in concrete: A review." Polymers, 15(15), 3320. Qin, L., Yan, J., Zhou, M., Liu, H., Wang, A., Zhang, W., Duan, P., & Zhang, Z. (2023). "Mechanical properties and durability of fiber-reinforced geopolymer composites: a review on recent progress." Engineering Reports, 5(12), e12708. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernandez-Jimenez, A. (2014). "A review on alkaline activation: new analytical perspectives." Materiales de Construcción, 64(315), 1-17. Sakulich, A.R., Sobolev, K. (2016). "Use of nanoparticles to improve durability and sustainability of concrete pavements." Transportation Research Record: Journal of the Transportation Research Board, 2563(1), 100-106. Rahmawati, Y., Aprilia, S., Wahyuni, E. (2021). "Microstructure and mechanical properties of nano-silica modified geopolymer concrete." Construction and Building Materials, 291, 123210. Ganesh, C., Muthukannan, M. (2019). "Performance of geopolymer concrete with PET waste under mechanical and durability testing." Journal of Materials in Civil Engineering, 31(5), 04019045. Chithambar Ganesh, M., Ramesh, A., Chandran, P. (2022). "PET-modified geopolymer concrete: Influence on flexural behavior and durability." Construction and Building Materials, 329, 127071. Revathi, S., Sathis Kumar, P., Suresh, D., & Thowfick Anwar, S. (2023). "Behaviour of concrete with PET bottles as fibers and silica fume as partial replacement of cement." Materials Today: Proceedings. Hussein, T. A., Mosaberpanah, M. A., & Kurda, R. (2023). "Synergic effect of polyester fiber and nano silica on chemical resistance of geopolymer mortar." PLOS ONE, 18(9), e0289497. Duży, P., Choinska, M., Claverie, J., Amiri, O., & Hager, I. (2023). "Effects of chemicals exposure on the durability of geop olymer concrete incorporated with silica fume and nano‑sized silica at varying curing temperatures." Materials, 16(15), 5959. Haq, M. Z. U., Sood, H., Kumar, R., & Ricciotti, L. (2024). "Sustainable geopolymers from polyethylene terephthalate waste and industrial by products." Journal of Materials Science, 59(9), 3858 – 3889. Giri, Y. G. A. P., Mohammed, B. S., Liew, M. S., et al. (2023). "Mechanical and microstructural properties of rubberized geopolymer concrete." Buildings, 13(8), 2021. Kantarcı, F., Türkmen, İ., & Canpolat, O. (2023). "Enhancing acid resistance of geopolymer concrete composites by utilising s tyrene – butadiene latex, nano‑silica and micro‑silica powder." European Journal of Environmental and Civil Engineering. Chiranjeevi, K., Abraham, M., Rath, B., & Praveenkumar, T. R. (2023). "Enhancing the properties of geopolymer concrete using nano‑silica and microstructure assessment: a sustainable approach." Scientific Reports, 13(1), 17302. Rahmawati, C., Aprilia, S., Saidi, T., & Aulia, T. B. (2021). "The effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement." Polymers, 13(13), 2178. Khan, S. U., & Ayub, T. (2022). "PET fiber – reinforced engineered geopolymer and cementitious composites." Journal of Materials in Civil Engineering, 34(3), 06021010. Sobhan, K., Martinez, F. J., & Reddy, D. V. (2021). "Corrosion resistance of fiber-reinforced geopolymer structural concrete in a simulated marine environment." Canadian Journal of Civil Engineering, 49, 310-317. Babu, P. N., Gopinath, R., & Raghavendra, V. (2024). Microstructural Analysis of Fiber-Reinforced Concrete Using SEM and EDX. Journal of Civil Engineering Materials and Structures, 35(3), 215-228.
Made with FlippingBook - Online catalogs