PSI - Issue 7

ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com cienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Structu al Integrity 7 (2017) 291–298 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2017) 000–000 ScienceDirect Structural Integrity Procedia 00 (2017) 000–000

www.elsevier.com/locate/procedia

www.elsevier.com/locate/procedia

www.elsevier.com/locate/procedia XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017, 19-22 September 2017, Lecco, Italy Static and cyclic strength properties of brittle adhesives with porosity G. Fernandez a , D. Vandepitte b *, H. Usabiaga a , S. Debruyne b a Mechanics Department, IK4-Ikerlan, Jose Maria Arizmendiarrieta Ibilbidea 2, Arrasate-Mondragon, 20500 Gipuzkoa, Spain b Department of Mechanical Engineering, KU Leuven, Kasteelpark Arenberg 41, Leuven, 3001, Belgium Abstract Adhesive joints play an important role in structural reliability and durability of assem led load carrying structures. In the application of wind turbine blades the wing box is built up of shear webs and shear caps which are joined to each other with brittle adhesives. With blade dimensions in the order of 40 to 50 m and with current manufacturing tolerances and assembly procedures, adhesive joint thickness may be up to 10 mm, with a high probability on the presence of voids and cavities. As the blade is subjected to simultaneous bending, torsion and shear force, the stress state in the adhesive layers is multi-axial and stress components are non-proportional. The machine has an economical life of 20 years and fatigue may be a critical phenomenon. This research focuses on a bottom-up adhesive properties characterization and its validation in composite joints. It starts from the characterization of bulk adhesive going through bonded joint specimens and subcomponents. This paper focusses on the levels of the adhesive material itself and of the joint. After an extensive experimental campaign with particular attention to porosity in the adhesive a probabilistic approach is used to identify the most appropriate failure criterion. The strength prediction method considers a statistical size effect in the strength of the material by considering not only the magnitude of the stress distributions, but also the volume over which they act. This approach is subsequently used for the numerical prediction of the strength of joints in simple j ints and in spar-cap-shear web subcomponent. The pr icted resistance of joints are n agreement with ex imental joint tests. © 2017 The Au hors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committe of the 3rd Int rnational Symposium on Fatigue Design and Material Defects. 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017, 19-22 September 2017, Lecco, Italy Static and cyclic strength properties of brittle adhesives with orosity G. F rnandez a , D. Vandepitte b *, H. Usabiaga a , S. Debruyne b a Mechanics Department, IK4-Ikerlan, Jose Maria Arizmendiarrieta Ibilbidea 2, Arrasate-Mondragon, 20500 Gipuzkoa, Spain b Department of Mechanical Engineering, KU Leuven, Kasteelpark Arenberg 41, Leuven, 3001, Belgium Abstract Adhesive joints play an important role in structural reliability and durability of assembled load carrying structures. In the application of wind turbine blades the wing box is built up of shear webs and shear caps which are joined to each other with brittle adhesives. With blade dimensions in the order of 40 to 50 m and with current manufacturing tolerances and assembly procedures, adhesive joint thickness may be up to 10 mm, with a high probability on the presence of voids and cavities. As the blade is subjected to simultaneous bending, torsion and shear force, the stress state in the adhesive layers is multi-axial and stress compo en s are non-pr portional. The m chine has an economical life of 20 years and fatigue may be critical phenomen . Thi r search focuses on a bottom-up adhesive properties characterization and its validation in c mposite joints. It starts from the characterization of bulk adhesive going through bonded joint specimens and subcomponents. This paper f cusses on the levels of the adhesive material itself and of the joint. After an extensive experimental campaign with particular attention to porosity in the adhesive a probabilistic approach is used to identify the most appropriate failure criterion. The strength prediction method considers a statistical size effect in the strength of the material by considering not only the magnitude of the stress distributions, but also the volume over which they act. This approach is subsequently used for the numerical prediction of the strength of joints in simple joints and in spar-cap-shear web subcomponent. The predicted resistance of joints are in agreement with experimental joint tests. © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of the 3rd International Symposium on Fatigue Design and Material Defects. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Copyright © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of the 3rd International Symposium on Fatigue Design and Material Defects.

Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation.

* Corresponding author. Tel.: +32 16 32 86 05; fax: +32 16 3 22987. E-mail address: dirk.vandepitte@kuleuven.be

2452-3216 © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of the 3rd International Symposium on Fatigue Design and Material Defects. 2452-3216 © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of the 3rd International Symposium on Fatigue Design and Material Defects. * Corresponding author. Tel.: +32 16 32 86 05; fax: +32 16 3 22987. E-mail address: dirk.vandepitte@kuleuven.be

* Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt

2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016.

2452-3216 Copyright  2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of the 3rd International Symposium on Fatigue Design and Material Defects. 10.1016/j.prostr.2017.11.091

Made with FlippingBook Annual report maker