PSI - Issue 7

Ana D. Brandão et al. / Procedia Structural Integrity 7 (2017) 58–66 Author name / Structural Integrity Procedia 00 (2017) 000–000

66

9

Lopatriello, M.; Gasbarri, P.; Paris, C.; Brotzu, A.; Paiano, S., 2015. Thermo-mechanical characterization of a carbon micro-fibre reinforced polymer for additive manufacturing in space applications, 66th International Astronautical Congress 2015: Space—The Gateway for Mankind’s Future (IAC), New York, U.S.A, Volume 9, pp. 6758–6766. Romano, S., Brandão, A., Gumpinger, J., Gschweitl, M., Beretta, S., 2017. Qualification of AM parts: Extreme value statistics applied to tomographic measurements. Materials and Design 131, 32-48. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., Bültmann, J., 2011. High power Selective Laser Melting (HP SLM) of aluminum parts. Physics Procedia 12, 271–278. Read, N., Wang, W., Essa, K., Attallah, M. M., 2015. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials and Design 65, 417–424. Kempen, K., Thijs, L., Van Humbeek, J., Kruth, J.-P., 2012. Mechanical properties of AlSi10Mg produced by selective laser melting. Physics Procedia 39, 439– 446. Hitzler, L., Janousch, C., Schanz, J., Merkel, M., Heine, B., Mack, F., Hall, W., Öchsner, A., 2017. Direction and Location Dependency of Selective Laser Melted AlSi10Mg Specimens. Journal of Materials Processing Technology 243, 48-61. Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D., 2012. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behaviour. Materials and Design 34, 159–169. Maskery, I., Aboulkhair, N.T., Tuck, C., Wildman, R.D., Ashcroft, I.A., Everitt, N.M, Hague, R.J.M., 2015. Fatigue Performance Enhancement of Selectively Laser Melted Aluminium Alloy by Heat Treatment, Twenty-Sixth Annual International Solid Freeform Fabrication (SFF) Symposium – An Additive Manufacturing Conference, Texas, U.S.A., page 1017. Tang, M., Pistorius, P. Chris, 2017. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. International Journal of Fatigue, 94, 192–201. Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M, 2016. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Materials and Design 104, 174-182. Mower, T.M., Long, M.J., 2016. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Materials Science & Engineering A 651, 198– 213. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J.V., Kruth, J.-P., 2010. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia 58, 3303–3312. ASTM E466-15, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, PA, 2015, www.astm.org. doi: 10.1520/E0466-15. Aboulkhair, N.T., Everitt, N.M., Maskery, I., Ashcroft, I., Tuck, C., 2017. Selective laser melting of aluminum alloys. MRS Bulletin, 42, 311-319. Greitemeier, D., Donne, C.D., Syassen, F., Eufinger, J., Melz, T., 2016. Effect of surface roughness on fatigue performance of Ti–6Al–4V, Materials Science and Technology 32, 629-634. EOS GmbH -Electro Optical Systems, 2015. EOS Aluminium AlSi10Mg Material data sheet – M400 90 µm FlexLine, Munich, Germany. Engel, L., Klingele, H., 1981. An Atlas of Metal Damage. Wolf Science Books, London, pp. 85.

Made with FlippingBook Annual report maker