PSI - Issue 7

Ning Wang et al. / Procedia Structural Integrity 7 (2017) 376–382 N. Wang et al. / Structural Integrity Procedia 00 (2017) 000–000

382

7

Nakamura, T., Kaneko, M., Noguchi, T., et al., 1998. Relation between high cycle fatigue characteristics and fracture origins in low-temperature tempered Cr-Mo steel. Transactions of the Japan Society of Mechanical Engineers, Series A, 64(623): 1820-1825. Shiozawa, K., Lu, L., Ishihara, S., 2001. S–N curve characteristics and subsurface crack initiation behaviour in ultra - long life fatigue of a high carbon ‐ chromium bearing steel . Fatigue & Fracture of Engineering Materials & Structures, 24(12): 781-790. Shiozawa, K., Morii, Y., Nishino. S., et al., 2006. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. International Journal of Fatigue, 28(11): 1521-1532. Wang, Q. Y., Berard, J. Y., Rathery, S., et al., 1999. Technical note High ‐ cycle fatigue crack initiation and propagation behaviour of high strength spring steel wires . Fatigue & Fracture of Engineering Materials & Structures, 22(8): 673-677. Yang, Z. G., Li, S .X., Zhang, J. M., et al., 2004. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Materialia, 52(18): 5235-5241. Yang, Z. G., Li, S. X., Li, Y. D., et al., 2010. Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime. Materials Science and Engineering: A, 527(3): 559-564. Zhu, M. L., Liu, L. L., Xuan, F. Z., 2015a. Effect of frequency on very high cycle fatigue behavior of a low strength Cr–Ni–Mo–V steel welded joint. International Journal of Fatigue, 77: 166-173. Zhu, M. L., Xuan, F. Z., 2015b. Effect of microstructure on strain hardening and strength distributions along a Cr–Ni–Mo–V steel welded joint. Materials & Design, 65: 707-715.

Made with FlippingBook Annual report maker