PSI - Issue 64
Shirley J. Dyke et al. / Procedia Structural Integrity 64 (2024) 21–28 Dyke et al / Structural Integrity Procedia 00 (2019) 000–000
28 8
References
Choi, J., Park, J. A., Dyke, S. J., Yeum, C. M., Liu, X., Lenjani, A., & Bilionis, I. (2022). Similarity learning to enable building searches in post event image data. Computer-Aided Civil and Infrastructure Engineering, 37(2), 261–275. https://doi.org/10.1111/mice.12698 Dyke, S., Liu, X., Jongseong Choi, Chul Min Yeum, Juan Park, Max Midwinter, Thomas Hacker, Zhiwei Chu, Julio Ramirez, Randall Poston, Mathieu Gaillard, Bedrich Benes, Ali Lenjani, & Xin Zhang. (2020). Learning From Earthquakes Using the Automatic Reconnaissance Image Organizer (ARIO). 17th World Conference on Earthquake Engineering, 47907(6). Iturburu, L., Kwannandar, J., Dyke, S. J., Liu, X., Zhang, X., & Ramirez, J. (2023). Towards rapid and automated vulnerability classification of concrete buildings. Earthquake Engineering and Engineering Vibration, 22(2), 309–332. https://doi.org/10.1007/s11803-023-2171-2 Lenjani, A., Bilionis, I., Dyke, S. J., Yeum, C. M., & Monteiro, R. (2020). A resilience-based method for prioritizing post-event building inspections. Natural Hazards, 100(2), 877–896. https://doi.org/10.1007/s11069-019-03849-0 Lenjani, A., Dyke, S. J., Bilionis, I., Yeum, C. M., Kamiya, K., Choi, J., Liu, X., & Chowdhury, A. G. (2020). Towards fully automated post-event data collection and analysis: Pre-event and post-event information fusion. Engineering Structures, 208. https://doi.org/10.1016/j.engstruct.2019.109884 Liu, X. (2022). Automated Image Localization and Damage Level Evaluation for Rapid Post-Event Building Assessment [PhD Dissertation]. Purdue University. Liu, X., Dyke, S. J., Lenjani, A., Bilionis, I., Zhang, X., & Choi, J. (2023). Automated image localization to support rapid building reconnaissance in a large-scale area. Computer-Aided Civil and Infrastructure Engineering, 38(1), 3–25. https://doi.org/10.1111/mice.12828 Liu, X., Dyke, S. J., Yeum, C. M., Bilionis, I., Lenjani, A., & Choi, J. (2020). Automated indoor image localization to support a post‐event building assessment. Sensor201s (Switzerland), 20(6). https://doi.org/10.3390/s20061610 Liu, X., Iturburu, L., Dyke, S. J., Lenjani, A., Ramirez, J., & Zhang, X. (2022). Information fusion to automatically classify post-event building damage state. Engineering Structures, 253. https://doi.org/10.1016/j.engstruct.2021.113765 Park, J. A., Liu, X., Yeum, C. M., Dyke, S. J., Midwinter, M., Choi, J., Chu, Z., Hacker, T., & Benes, B. (2022). Multioutput Image Classification to Support Postearthquake Reconnaissance. J of Performance of Const Facilities, 36(6). https://doi.org/10.1061/(asce)cf.1943-5509.0001755 Park, J., Yeum, M., Choi, J., & Liu, X. (2019). Automated Image Classification for Post-Earthquake Reconnaissance Images. Journal of Computational Vision and Imaging Systems, 5(1), 1–1. Wogen, B. E., Choi, J., Zhang, X., Liu, X., Iturburu, L., & Dyke, S. J. (2024). Automated Bridge Inspection Image Retrieval Based on Deep Similarity Learning and GPS. Journal of Structural Engineering, 150(3). https://doi.org/10.1061/jsendh.steng-12639 Yeum, C. M., & Dyke, S. J. (2015). Vision - based automated crack detection for bridge inspection. Computer - Aided Civil and Infrastructure Engineering, 30(10), 759-770. Yeum, C. M., Dyke, S. J., Ramirez, J., & Benes, B. (2016). Big visual data analytics for damage classification in civil engineering. In Transforming the Future of Infrastructure through Smarter Information: Proceedings of the International Conference on Smart Infrastructure and Construction, 27–29 June 2016 (pp. 569-574). ICE Publishing. Yeum, C. M., Dyke, S. J., Ramirez, J., & Benes, B. (2016). Big visual data analytics for damage classification in civil engineering. In Transforming the Future of Infrastructure through Smarter Information: Proceedings of the International Conference on Smart Infrastructure and Construction, 27–29 June 2016 (pp. 569-574). ICE Publishing. Yeum, C. M., Choi, J., & Dyke, S. J. (2017). Autonomous image localization for visual inspection of civil infrastructure. Smart Materials and Structures, 26(3), 035051. Yeum, C. M., Dyke, S. J., Benes, B., Hacker, T., Ramirez, J., Lund, A., & Pujol, S. Rapid, automated post-event image classification and documentation. In 7th Int’l Conference on Advances in Experimental Structural Engineering. , Pavia, Italy, September 6-8, 2017. Yeum, C. M. (2016). Computer vision-based structural assessment exploiting large volumes of images (Doctoral dissertation, Purdue University). Yeum, C. M., Dyke, S. J., & Ramirez, J. (2018). Visual data classification in post-event building reconnaissance. Engineering Structures, 155, 16– 24. https://doi.org/10.1016/j.engstruct.2017.10.057 Yeum, C.M, Lund, A., Dyke, S.J., and Ramirez, J. (2019). Automated Recovery of Structural Drawing Images Collected from Post-Disaster Reconnaissance, Journal of Computing in Civil Engineering, ASCE, 33(1), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000798. Yeum, C. M., Lund, A., Dyke, S. J., & Ramirez, J. (2019). Automated recovery of structural drawing images collected from postdisaster reconnaissance. Journal of Computing in Civil Engineering, 33(1), 04018056. Yeum, C. M., Choi, J., & Dyke, S. J. (2019). Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure. Structural Health Monitoring, 18(3), 675-689. Yeum, C. M., Dyke, S. J., Benes, B., Hacker, T., Ramirez, J., Lund, A., & Pujol, S. (2019). Post-event reconnaissance image documentation using automated classification. Journal of Performance of Constructed Facilities, 33(1), 04018103. Zhang, X., Beck, C., Lenjani, A., Bonthron, L., Lund, A., Liu, X., Dyke, S. J., Ramirez, J., Baah, P., & Hunter, J. (2023a). Enabling Rapid Large Scale Seismic Bridge Vulnerability Assessment Through Artificial Intelligence. In Transportation Research Record (Vol. 2677, Issue 2, pp. 1354–1372). SAGE Publications Ltd. https://doi.org/10.1177/03611981221112950 Zhang, X., Salmeron, M., Wogen, B. E., Liu, X., Iturburu, L., & Dyke, S. (2023b). Reinforcement Learning-based Bridge Inspection Management. Proceedings of the Fourteenth International Workshop on Structural Health Monitoring, Stanford, September. Zhang, X., Wogen, B. E., Liu, X., Iturburu, L., Salmeron, M., Dyke, S. J., Poston, R., & Ramirez, J. A. (2023c). Machine-Aided Bridge Deck Crack Condition State Assessment Using Artificial Intelligence. Sensors, 23(9). https://doi.org/10.3390/s23094192
Made with FlippingBook Digital Proposal Maker