PSI - Issue 64
Niloofar Heirani et al. / Procedia Structural Integrity 64 (2024) 6–13 Author name / Structural Integrity Procedia 00 (2019) 000–000
13
8
Han, B., Ou, J., 2007. Embedded piezoresistive cement-based stress/strain sensor. Sens Actuators A Phys 138, 294–298. https://doi.org/10.1016/J.SNA.2007.05.011 Han, B., Yu, X., Kwon, E., 2009. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 20, 445501. https://doi.org/10.1088/0957-4484/20/44/445501 Han, J., Pan, J., Cai, J., Li, X., 2020. A review on carbon-based self-sensing cementitious composites. Constr Build Mater 265, 120764. https://doi.org/10.1016/J.CONBUILDMAT.2020.120764 Heirani, N., 2021. Optimizing the Fabrication of Cementitious Sensors for Structural Health Monitoring. Lee, S.H., Kim, S., Yoo, D.Y., 2018. Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete. Constr Build Mater 185, 530–544. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.071 Li, V.C., Obla, K.H., 1994. Effect of Fiber Length Variation on Tensile Properties of Carbon Fiber Cement Composites. International Journal of Composites Engineering 4, 947–964. Luo, J., Zhang, C., Duan, Z., Wang, B., Li, Q., Chung, K.L., Zhang, J., Chen, S., 2018. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites. Sens Actuators A Phys 280, 413–421. https://doi.org/10.1016/J.SNA.2018.08.010 Monteiro, A.O., Cachim, P.B., Costa, P.M.F.J., 2017. Self-sensing piezoresistive cement composite loaded with carbon black particles. Cem Concr Compos 81, 59–65. https://doi.org/10.1016/J.CEMCONCOMP.2017.04.009 Monteiro, H., Moura, B., Soares, N., 2022. Advancements in nano-enabled cement and concrete: Innovative properties and environmental implications. Journal of Building Engineering 56, 104736. https://doi.org/10.1016/J.JOBE.2022.104736 Qin, H., Ding, S., Ashour, A., Zheng, Q., Han, B., 2024. Revolutionizing infrastructure: The evolving landscape of electricity-based multifunctional concrete from concept to practice. Prog Mater Sci 145, 101310. https://doi.org/10.1016/J.PMATSCI.2024.101310 Roy, R.K., 2010. A Primer on the Taguchi Method, Second Edition. ed. Society of manufacturing engineers. Sun, M.Q., Li, J., Wang, Y.J., Zhang, X.Y., 2015. Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat. Constr Build Mater 79, 283–289. https://doi.org/10.1016/j.conbuildmat.2015.01.060 Teomete, E., Kocyigit, O.I., 2013. Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test. Constr Build Mater 47, 962–968. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.095 Tian, Z., Li, Y., Zheng, J., Wang, S., 2019. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Compos B Eng 177, 107437. https://doi.org/10.1016/J.COMPOSITESB.2019.107437 Wang, X., Fu, X., Chung, D.D.L., 1999. Strain sensing using carbon fiber. Wen, S., Chung, D.D., 2006. Effects of Strain and Damage on Strain-Sensing Ability of Carbon Fiber Cement. Journal of Materials in Civil Engineering 18, 355–360. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(355) Wen, S., Chung, D.D.L., 2008. Effect of Moisture on Piezoresistivity of Carbon Fiber-Reinforced Cement Paste. Materials Journal 105, 274–280. https://doi.org/10.14359/19824 Wen, S., Chung, D.D.L., 2003. A comparative study of steel- and carbon-fibre cement as piezoresistive strain sensors. Advances in Cement Research 15, 119–128. https://doi.org/10.1680/ADCR.2003.15.3.119/ASSET/IMAGES/SMALL/ADCR15-119-F11.GIF Wen, S., Chung, D.D.L., 1999. Piezoresistivity in continuous carbon fiber cement-matrix composite. Cem Concr Res 29, 445–449. https://doi.org/10.1016/S0008-8846(98)00211-7 Xiao, H., Li, H., Ou, J., 2010. Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain. Sens Actuators A Phys 160, 87–93. https://doi.org/10.1016/J.SNA.2010.04.027 Xu, J., Yin, T., Wang, Y., Liu, L., 2021. Anisotropic electrical and piezoresistive sensing properties of cement-based sensors with aligned carbon fibers. Cem Concr Compos 116, 103873. https://doi.org/10.1016/J.CEMCONCOMP.2020.103873 Yoo, D.Y., You, I., Lee, S.J., 2017. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors 2017, Vol. 17, Page 1064 17, 1064. https://doi.org/10.3390/S17051064 Yoo, D.Y., You, I., Zi, G., Lee, S.J., 2019. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement 134, 750–761. https://doi.org/10.1016/J.MEASUREMENT.2018.11.024 You, I., Yoo, D.Y., Kim, S., Kim, M.J., Zi, G., 2017. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes. Sensors 2017, Vol. 17, Page 2481 17, 2481. https://doi.org/10.3390/S17112481
Made with FlippingBook Digital Proposal Maker