PSI - Issue 64
ScienceDirect Structural Integrity Procedia 00 (2023) 000 – 000 Structural Integrity Procedia 00 (2023) 000 – 000 Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Available online at www.sciencedirect.com ScienceDirect
www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia
Procedia Structural Integrity 64 (2024) 1824–1831
SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Stress recovery behavior of a promising NiTiNb-SMA plate for bonded prestressed strengthening Mao Ye a , Tao Chen a, *, Lingzhen Li b , Elyas Ghafoori c a Tongji University, Shanghai 200092, China b The Hong Kong Polytechnic University, Hong Kong 999077, China c Leibniz University Hannover, Hannover 30167, Germany Abstract Shape memory alloys (SMAs) are functional metallic materials, possessing a remarkable characteristic known as the shape memory effect (SME), by which a considerable recovery stress can be generated through a simple thermal activation. A NiTiNb SMA plate is employed in this study, aimed at prestressed strengthening of steel members. To better understand the mechanism of the generation of recovery stress, tests were conducted on the NiTiNb-SMA plates (thickness 1.5 mm) to characterize the basic mechanical properties and stress recovery behavior. Tests include: tensile failure test, prestraining, activation, and re-activation. The influence of key parameters such as prestrain level and activation temperature on the stress recovery behavior of this NiTiNb-SMA plate was evaluated. Re-activation was discussed. Test results revealed that the largest recovery stress reached 448.6 MPa when the material was prestrained by 8% and activated at 180 ℃ . This suggests that the activation temperature of 180 ℃ could be optimal for this material to generate sufficient recovery stress. Such a strategy should be promising for bonded prestressed strengthening, as this activation temperature would have limited influence on the adhesive bond of the bonded prestressed strengthening system. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers Keywords: Shape memory alloy (SMA), Nickel-Titanium-Niobium (NiTiNb), stress recovery behavior, activation temperature, bonded prestressed strengthening. SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Stress recovery behavior of a promising NiTiNb-SMA plate for bonded prestressed strengthening Mao Ye a , Tao Chen a, *, Lingzhen Li b , Elyas Ghafoori c a Tongji University, Shanghai 200092, China b The Hong Kong Polytechnic University, Hong Kong 999077, China c Leibniz University Hannover, Hannover 30167, Germany Abstract Shape memory alloys (SMAs) are functional metallic materials, possessing a remarkable characteristic known as the shape memory effect (SME), by which a considerable recovery stress can be generated through a simple thermal activation. A NiTiNb SMA plate is employed in this study, aimed at prestressed strengthening of steel members. To better understand the mechanism of the generation of recovery stress, tests were conducted on the NiTiNb-SMA plates (thickness 1.5 mm) to characterize the basic mechanical properties and stress recovery behavior. Tests include: tensile failure test, prestraining, activation, and re-activation. The influence of key parameters such as prestrain level and activation temperature on the stress recovery behavior of this NiTiNb-SMA plate was evaluated. Re-activation was discussed. Test results revealed that the largest recovery stress reached 448.6 MPa when the material was prestrained by 8% and activated at 180 ℃ . This suggests that the activation temperature of 180 ℃ could be optimal for this material to generate sufficient recovery stress. Such a strategy should be promising for bonded prestressed strengthening, as this activation temperature would have limited influence on the adhesive bond of the bonded prestressed strengthening system. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers Keywords: Shape memory alloy (SMA), Nickel-Titanium-Niobium (NiTiNb), stress recovery behavior, activation temperature, bonded prestressed strengthening. © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers
2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers * Corresponding author at: Department of Structural Engineering, Tongji University, Shanghai 200092, China. E-mail address: t.chen@tongji.edu.cn * Corresponding author at: Department of Structural Engineering, Tongji University, Shanghai 200092, China. E-mail address: t.chen@tongji.edu.cn
2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 10.1016/j.prostr.2024.09.215
Made with FlippingBook Digital Proposal Maker