PSI - Issue 64

Nicola Nisticò et al. / Procedia Structural Integrity 64 (2024) 2230–2237 Nicola Nisticò/ Structural Integrity Procedia 00 (2019) 000–000

2237

8

Fukushima, K., 1980. Neurocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980 -36 (4), 193–202. Ghavamiana, F., Simone, A., 2019. Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput. Methods Appl. Mech. Engrg. 357 (2019) 112594omput. Methods Appl. Mech. Engrg. 357 (2019) 112594. Glaessgen, E., Stargel, D., 2012. The digital twin paradigm for future NASA and U.S. Air Force vehicles, in Proc. 53rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conference -2012, https://doi.org/10.2514/6.2012- 1818. Grieves, M., 2014. - Digital twin: Manufacturing excellence through virtual factory replication - White Paper - 2014. Inglese, C., Paris, L., 2020. Art and Technique of Roman Stone Bridges. (in Italian) Roma: Sapienza University Press. ISBN 978-88-9377-150-4. DOI 10.13133/9788893771504 Janga, B., Asamani, G.P., Sun, Z., Cristea, N. A, 2023. Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. https://doi.org/10.3390/ rs15164112. Kaplan, A., Haenlein, M., 2018. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence – 2019 - Bus. Horizons 62(1), 15–25-https://doi.org/10.1016/j.bushor.2018.08.004. Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, J., 1993. A case study of the first expert system for scientific hypothesis formation, Artificial Intelligence 61 (1993) 209-261 209 Elsevier ARTINT 959 DENDRAL. Lipton, Z.C., Berkowitz, J., Elkan, C., 2015. A critical review of recurrent neural networks for sequence learning. arXiv e-prints, art. arXiv:1 506.00019, 2015. URL http://arxiv.org/abs/1506.00019v4. Motte, K., Weijtjens, W., Devriendt, C. and Guillaume, P., 2015. Operational modal analysis in the presence of harmonic excitations: a review. In Dynamics of Civil Structures, Volume 2: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 (pp. 379-395). Springer International Publishing. Nisticò, N., Gambarelli, S., Fascetti, A., Quaranta, G. (2016) Experimental Dynamic Testing and Numerical Modeling of Historical Belfry. International Journal of Architectural Heritage, 10(4), 476–485 Nisticò N., 2023. IMPIS 4 CH O D 2 - An Intelligent Multi-Purpose System For Cultural Heritage Objects reproduced through Digital Twin Nisticò N., 2024. Innovative tools and methods for digitizing both visible and non-visible attributes of cultural heritage items. Part II: a multiscale approach. SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. Structural Integrity Procedia 00 (2019) 000–000. Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., ... & Maldague, X. P. 2021. Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones 2021, 5, 106. https://doi.org/10.3390/ drones5040106. Özdemir, E., Remondino, E., 2018. Segmentation of 3D photogrammetric point cloud for 3D building modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W10, 2018 13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands. Pau, A., Vestroni, F., 2008. Vibration analysis and dynamic characterization of the Colosseum. Struct. Control Health Monit. 2008; 15:1105–1121 Pau, A., Vestroni, F., 2013. Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome. Mechanical Systems and Signal Processing 41 (2013) 454–466 Pauly, M., Mitra, N. J., and Guibas, L. J., 2004. - Uncertainty and variability in point cloud surface data, in Proceedings of the First Eurographics Conference on Point-Based Graphics, SPBG’04. eds M. Alexa, M. Gross, H. Pfister, and S. Rusinkiewicz (Aire-la-Ville: Eurographics Association), 2004 - 77–84. Pavlidis, G., Koutsoudis, A. Arnaoutoglou, F., Tsioukas, V., Chamzas, C., 2006. Methods for 3D digitization of Cultural Heritage. Journal of Cultural Heritage 2007 - 8(1) DOI:10.1016/j.culher.2006.10.007. Qu, C.X., Yi, T.H. and Li, H.N., 2019. Mode identification by eigensystem realization algorithm through virtual frequency response function. Structural Control and Health Monitoring, 26(10), p.e2429 Reynders, E., 2012. System identification methods for (operational) modal analysis: review and comparison. Archives of Computational Methods in Engineering, 19, pp.51-124. Scislo, L., 2023. Single-Point and Surface Quality Assessment Algorithm in Continuous Production with the Use of 3D Laser Doppler Scanning Vibrometry System. Sensors, 2023 - 23, 1263. https://doi.org/ 10.3390/s23031263. Spagnolo, G.S., Somma, F., 2010. Virtual restoration of cracks in digitized image of paintings. J. Phys., 2010-Conf. Ser. Turing, A.M., 1950. - Computing Machinery and Intelligence – 1950 - Mind 49: 433-460. Venuti V., Fazzari, B., Crupi, V., Majolino, D. , Paladini, G., Morabito, G., Certo, G., Lamberto, S. , Giacobbe, L., 2020. In situ diagnostic analysis of the XVIII century Madonna della Lettera panel painting (Messina, Italy) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020 - 228(5). Vrana, J., Sing, R., 2021. NDE 4.0 - Design Thinking Perspective. Journal of Nondestructive Evaluation, 2021 - 40:8 https://doi.org/10.1007/s10921-020-00735-9. Zahid, F.B., Ong, Z.C. and Khoo, S.Y., 2020. A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, pp.1-18. Zhang, Z., Zhang, D., Qiu, R.C., 2020. Deep Reinforcement Learning for Power System Applications: An Overview. CSEE Journal of power and energy systems, Vol. 6 (1) 2020. Zhang, L. Cheng, L.,· Li, H., · Gao, J., Yu, C., Domel, R., Yang, Y., Tang, S., Liu, W.K., 2021. Hierarchical deep-learning neural networks: finite elements and beyond, Computational Mechanics (2021) 67:207–230 https://doi.org/10.1007/s00466-020-01928-9. Zhu, Y., Zabras, N., Koutsourelakis, P.S., Perdikaris, P., 2019. Phisics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput Phys. (2019) 394:56-81.

Made with FlippingBook Digital Proposal Maker