PSI - Issue 64

Urs Meier et al. / Procedia Structural Integrity 64 (2024) 29–39 Meier/Winistörfer / Structural Integrity Procedia 00 (2019) 000 – 000

39 11

in this area promises to make CFRP an even more sustainable choice in the future. CFRP can also be shredded and used to reinforce asphalt. We can expect CFRP to be produced from captured CO 2 within a decade or so, Meier (2020). In summary, CFRP offers numerous sustainability benefits in the construction industry. Its high strength-to-weight ratio, durability, potential for energy efficiency improvements and resource efficiency make it a valuable material for sustainable building practices. Since 1991, around 135,000 tons of CFRP have been used for rehabilitation worldwide (Figure 9). Based on Table 3, around 3.8 million tons of CO 2 have been avoided and 24 million GJ of energy saved over the past three decades thanks to the use of CFRP. 5. Conclusions In conclusion, carbon fiber reinforced polymer tendons represent a compelling solution for structural rehabilitation. Their inherent fatigue strength, lightweight, durability, sustainability, and versatility make them well suited for a wide range of applications in rehabilitation, offering engineers the freedom to envision and realize retrofitting projects that are both resilient and sustainable. As structural engineers, continue to push the boundaries of structural engineering, the integration of CFRP tendons promises to shape the built environment of the future, ensuring safer, more efficient, and more enduring infrastructure for generations to come. References Amici, C., M., 2015. Hidden iron: High tech devices in Roman imperial architecture, 5th International Congress on Construction History Conen, H., 1966. Deformation und Versagen von GFK-Strangschlaufen, Kunststoffe 56, 629-681. Galmarini, A., Kübler, W., Schriber, N., 2022. Heritage renovation - Leuenhof, Zurich, Proceedings of the sixth fib-Congress June 12 to 16, 2022, Oslo, Norway, 92-103. Huster, U., Brönnimann, R., Winistörfer, A., 2008. Strengthening of a historical roof structure with CFRP straps, Procs. 4th International Conference on FRP Composites in Civil Engineering (CICE2008), ed. M. Motavalli, paper 8.B.4. Kaufmann, W., Marti, P., 1996. Versuche an Stahlbetonträgern unter Normal- und Querkraft, Institut für Baustatik und Konstruktion, ETH Zürich, IBK, Bericht Nr. 226, Birkhäuser Verlag, Basel, 131 pp. Keil, A., Haspel, L., 2021. Stadtbahnbrücke, Bautechnik 98, 149 – 158. Kempe, O., 1999. The stabilization of the gothic roof bearing structure of the Frauenkirche in Meissen with CFRP-tension, Transactions on the Built Environment, 39, WIT Press, ISSN 1743-3509 Lees, J. M., Winistörfer, A. U., 2011. Non ‐ laminated FRP Strap Elements for Reinforced Concrete, Timber and Masonry Applications, ASCE Journal of Composites for Construction 15, 146 ‐ 155. Lees, J. M., Winistörfer, A. U., Meier, U., 2002. External Prestressed Carbon Fiber-Reinforced Polymer Straps for Shear Enhancement of Concrete, Journal of Composites for Construction 6, 249-256. Meier, U., 1987. Brückensanierungen mit Hochleistungs-Faserverbundwerkstoffen, Material und Technik 15, 125-128. Meier, U., Deuring, M., Meier, H., Schwegler, G., 1992. Strengthening of structures with CFRP laminates: Research and applications in Switzerland, Proceedings of Advanced composite materials in bridges and structures (ACMBS) in Sherbrooke, Ed. K.W. Neale and P. Labossiere, 243-251. Meier, U., Müller, R., Barbezat, M., Terrasi, G. P., 2010. Box Girders under Extreme Long-Time Static and Fatigue Loading, Proceedings of the 5th International Conference on FRP Composites in Civil Engineering (CICE), Beijing. Meier, U., Brönnimann, R., Anderegg, P., 2016. Two Examples of post-tensioned CFRP cables in bridge construction: one in rehabilitation one in new construction, Proceedings of the Eighth International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2016, Hong Kong, China, Edited by J.G. Teng and J.G. Dai, 1069-1074. Meier, U., 2020. Sustainability of carbon fiber-reinforced polymers in construction. In Gulf Conference on Sustainable Built Environment, Springer International Publishing, 57-75. Meier, U., O., Winistörfer, A., U., Haspel, L., 2021. World’s First Large Bridge Fully Relying on Carbon Fiber Reinforced Polymer Hangers, SAMPE Journal 57, 22-30. Schnellenbach-Held, M., Welsch, T., Fickler, S., Hegger, J., Reißen, K., 2016. Verstärkungen älterer Beton und Spannbetonbrücken; Erfahrungssammlung, Bundesministerium für Verkehr und digitale Infrastruktur, Abteilung Straßenbau, 35. Stenger, F., 2001. Tragverhalten von Stahlbetonscheiben mit vorgespannter externer Kohlenstofffaser-Schubbewehrung, ETH Doctoral theses. Teng, J. G., Lam, L., Chen, J. F., 2004, Shear Strengthening of RC Beams with FRP Composites in Progress in structural engineering and materials, 6.3, 173 – 184. Winistörfer, A. U., 1999. Development of non-laminated advanced composite straps for civil engineering applications. PhD thesis, University of Warwick. Zhang, J., Lin, G., Vaidya, U., Wang, H., 2023. Past, present and future prospective of global carbon fibre composite developments and applications. Composites Part B 250, 37 – 70.

Made with FlippingBook Digital Proposal Maker