PSI - Issue 60

A.K. Dwivedi et al. / Procedia Structural Integrity 60 (2024) 286–297 A.K.Dwivedi/ Structural Integrity Procedia 00 (2019) 000 – 000

297

12

Buljac, A., Helfen, L., Hild, F., & Morgeneyer, T. F. (2018). Effect of void arrangement on ductile damage mechanisms in nodular graphite cast iron: In situ 3D measurements. Engineering Fracture Mechanics , 192 (December 2017), 242 – 261. https://doi.org/10.1016/j.engfracmech.2018.01.008 Cox, T. B., & Low, J. R. (1974). Investigation of the Plastic Fracture of Aisi 4340 and 18 Nickel - 200 Grade Maraging Steels. Metall Trans , 5 (6), 1457 – 1470. https://doi.org/10.1007/BF02646633 Dwivedi, A. K., Khan, I. A., & Chattopadhyay, J. (2022). A Numerical Study of Void Interactions in Elastic – Plastic Solids Containing Two Scale Voids. In Lecture Notes in Mechanical Engineering . Springer Singapore. https://doi.org/10.1007/978-981-16-8724-2_34 Dwivedi, A. K., Khan, I. A., & Chattopadhyay, J. (2023). On the role of shape and distribution of secondary voids in the mechanism of coalescence. Engineering Fracture Mechanics , 289 (June), 109399. https://doi.org/10.1016/j.engfracmech.2023.109399 Fabrègue, D., & Pardoen, T. (2008). A constitutive model for elastoplastic solids containing primary and secondary voids. Journal of the Mechanics and Physics of Solids , 56 (3), 719 – 741. https://doi.org/10.1016/j.jmps.2007.07.008 Gao, X., & Kim, J. (2006). Modeling of ductile fracture: Significance of void coalescence. International Journal of Solids and Structures , 43 (20), 6277 – 6293. https://doi.org/10.1016/j.ijsolstr.2005.08.008 Gao, X., Wang, T., & Kim, J. (2005). On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution. International Journal of Solids and Structures , 42 (18 – 19), 5097 – 5117. https://doi.org/10.1016/j.ijsolstr.2005.02.028 Gulivindala G., Karanam M.K., Tse K.M., Chinthapenta V. (2023). Influence of material anisotropy on void coalescence by necking for face centered cubic single crystals ." Materials Today Communications 35 (2023): 106010. Hütter, G., Zybell, L., & Kuna, M. (2014). Size effects due to secondary voids during ductile crack propagation. International Journal of Solids and Structures , 51 (3 – 4), 839 – 847. https://doi.org/10.1016/j.ijsolstr.2013.11.012 Hütter, G., Zybell, L., & Kuna, M. (2015). Micromechanical modeling of crack propagation in nodular cast iron with competing ductile and cleavage failure. Engineering Fracture Mechanics , 147 , 388 – 397. https://doi.org/10.1016/j.engfracmech.2015.06.039 Hütter, G., Zybell, L., Mühlich, U., & Kuna, M. (2012). Ductile crack propagation by plastic collapse of the intervoid ligaments. International Journal of Fracture , 176 (1), 81 – 96. https://doi.org/10.1007/s10704-012-9728-9 Hütter, G., Zybell, L., Mühlich, U., & Kuna, M. (2013). Consistent simulation of ductile crack propagation with discrete 3D voids. Computational Materials Science , 80 , 61 – 70. https://doi.org/10.1016/j.commatsci.2013.04.013 Keralavarma, S. M., & Chockalingam, S. (2016). A criterion for void coalescence in anisotropic ductile materials. International Journal of Plasticity , 82 , 159 – 176. https://doi.org/10.1016/j.ijplas.2016.03.003 Keralavarma, S. M., Reddi, D., & Benzerga, A. A. (2020). Ductile failure as a constitutive instability in porous plastic solids. Journal of the Mechanics and Physics of Solids , 139 . https://doi.org/10.1016/j.jmps.2020.103917 Khan, I. A., & Bhasin, V. (2017). On the role of secondary voids and their distribution in the mechanism of void growth and coalescence in porous plastic solids. International Journal of Solids and Structures , 108 , 203 – 215. https://doi.org/10.1016/j.ijsolstr.2016.12.016 Kim, J., Gao, X., & Srivatsan, T. S. (2003). Modeling of crack growth in ductile solids: A three-dimensional analysis. International Journal of Solids and Structures , 40 (26), 7357 – 7374. https://doi.org/10.1016/j.ijsolstr.2003.08.022 Koplik, J., & Needleman, A. (1988). Void Growth and Coalescence in Porous. International Journal of Solids and Structures , 24 (8), 835 – 853. https://doi.org/0020-7683(88)90051-0 Morin, L., & Michel, J. C. (2018). Void coalescence in porous ductile solids containing two populations of cavities. European Journal of Mechanics, A/Solids , 72 , 341 – 353. https://doi.org/10.1016/j.euromechsol.2018.04.017 Mostafavi, M., Smith, D. J., & Pavier, M. J. (2011). A micromechanical fracture criterion accounting for in-plane and out-of-plane constraint. Computational Materials Science , 50 (10), 2759 – 2770. https://doi.org/10.1016/j.commatsci.2011.04.023 Needleman, A. (1972). Void Growth in an Elastic-Plastic Medium. ASME Pap 72-APM-36 for Meet , 1 (December 1972). Noell, P. J., Carroll, J. D., & Boyce, B. L. (2018). The mechanisms of ductile rupture. Acta Materialia , 161 , 83 – 98. https://doi.org/10.1016/j.actamat.2018.09.006 Pardoen, T., & Hutchinson, J. W. (2000). Extended model for void growth and coalescence. Journal of the Mechanics and Physics of Solids , 48 (12), 2467 – 2512. https://doi.org/10.1016/S0022-5096(00)00019-3 Petti, J. P., & Dodds, R. H. (2005). Ductile tearing and discrete void effects on cleavage fracture under small-scale yielding conditions. International Journal of Solids and Structures , 42 (13), 3655 – 3676. https://doi.org/10.1016/j.ijsolstr.2004.11.015 Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). A cta Materialia Failure of metals I : Brittle and ductile fracture. Acta Materialia , 107 , 424 – 483. https://doi.org/10.1016/j.actamat.2015.12.034 Srivastava, A., Osovski, S., & Needleman, A. (2017). Engineering the crack path by controlling the microstructure. Journal of the Mechanics and Physics of Solids , 100 (August 2016), 1 – 20. https://doi.org/10.1016/j.jmps.2016.12.006 Tekoglu, C. (2014). Representative volume element calculations under constant stress triaxiality, Lode parameter, and shear ratio. International Journal of Solids and Structures , 51 (25 – 26), 4544 – 4553. https://doi.org/10.1016/j.ijsolstr.2014.09.001 Tipper CF. (1949). The fracture of metals. 39 , 133 – 137. Tvergaard, V., & Niordson, C. F. (2008). Size effects at a crack-tip interacting with a number of voids. Philosophical Magazine , 88 (30 – 32), 3827 – 3840. https://doi.org/10.1080/14786430802225540 Tvergaard, Viggo. (1981). Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture , 17 (4), 389 – 407. https://doi.org/10.1007/BF00036191 Tvergaard, Viggo. (2007). Discrete modelling of ductile crack growth by void growth to coalescence. International Journal of Fracture , 148 (1), 1 – 12. https://doi.org/10.1007/s10704-007-9172-4

Made with FlippingBook Learn more on our blog