PSI - Issue 60

Rishi K Sharma et al. / Procedia Structural Integrity 60 (2024) 264–276 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

276

13

pressure tube alloy. Journal of Nuclear Materials 325(1) , 26-33. Singh, R., Mikin, R. L., Dey, G., Sah, D., Batra, I., & Ståhle, P. (2006). Influence of temperature on threshold stress for reorientation of hydrides and residual stress variation across thickness of Zr – 2.5Nb alloy pressure tube. Journal of Nuclear Materials 359(3) , 208-219. Singh, R., Mukherjee, S., Gupta, A., & Banerjee, S. (2005). Terminal solid solubility of hydrogen in Zr-alloy pressure tube materials. Journal of Alloys and Compounds 389(1-2) , 102-112. Singh, R., Mukherjee, S., Kishore, R., & Kashyap, B. (2005). Flow behaviour of a modified Zr – 2.5wt%Nb pressure tube alloy. Journal of Nuclear Materials 345(2-3) , 146-161. Singh, R., Roychowdhury, S., Sinha, V., Sinha, T., De, P., & Banerjee, S. (2004). Delayed hydride cracking in Zr – 2.5Nb pressure tube material: influence of fabrication routes. Materials Science and Engineering: A 374(1-2) , 342-350. Tewari, R., Srivastava, D., Dey, G., Chakravarty, J., & Banerjee, S. (2008). Microstructural evolution in zirconium based alloys. Journal of Nuclear Materials 383(1-2) , 153-171. Theaker, J., Choubey, R., Moan, G., Aldridge, S., Davis, L., Graham, R., & Coleman, C. (1994). Fabrication of Zr – 2.5Nb pressure tubes to minimize the harmful effects of trace elements. Zr in the Nuclear Industry, ASTM STP 1245 , 221. Wallace, A., Shek, G., & Lepik, O. (1989). Effects of Hydride Morphology on Zr-2.5Nb Fracture Toughness. Zirconium in the Nuclear Industry, ASTM STP 1023 , 66-88.

Made with FlippingBook Learn more on our blog