PSI - Issue 60

Brahmadathan V B et al. / Procedia Structural Integrity 60 (2024) 214–221 Brahmadathan V B, C Lakshmana Rao/ Structural Integrity Procedia 00 (2019) 000 – 000

221

8

Bhattacharya, M., Dalui, S., Dey, N., Bysakh, S., Ghosh, J., & Mukhopadhyay, A. K. (2016). Low strain rate compressive failure mechanism of coarse grain alumina. Ceramics International , 42 (8), 9875 – 9886. https://doi.org/10.1016/j.ceramint.2016.03.087 Deshpande, V. S., Gamble, E. A. N., Compton, B. G., McMeeking, R. M., Evans, A. G., & Zok, F. W. (2011). A constitutive description of the inelastic response of ceramics. Journal of the American Ceramic Society , 94 (SUPPL. 1), s204 – s214. https://doi.org/10.1111/j.1551-2916.2011.04516.x Dresch, A. B., Venturini, J., Arcaro, S., Montedo, O. R. K., & Bergmann, C. P. (2021). Ballistic ceramics and analysis of their mechanical properties for armour applications: A review. Ceramics International , 47 (7), 8743 – 8761. https://doi.org/10.1016/j.ceramint.2020.12.095 Jamal M, N. Bin, Rao, C. L., & Basaran, C. (2021). A unified mechanics theory-based model for temperature and strain rate dependent proportionality limit stress of mild steel. Mechanics of Materials , 155 (January), 103762. https://doi.org/10.1016/j.mechmat.2021.103762 Johnson, G. R., & Holmquist, T. J. (1994). An improved computational constitutive model for brittle materials. AIP Conference Proceedings , 309 (1), 981 – 984. https://doi.org/10.1063/1.46199 Johnson, G. R., & Holmquist, T. J. (2008a). An improved computational constitutive model for brittle materials. AIP Conference Proceedings , 309 (1), 981. https://doi.org/10.1063/1.46199 Johnson, G. R., & Holmquist, T. J. (2008b). An improved computational constitutive model for brittle materials . 981 – 984. https://doi.org/10.1063/1.46199 Lankford, J. (1981). Mechanisms Responsible for Strain‐Rate‐Dependent Compressive Strength in Ceramic Materials. Journal of the American Ceramic Society , 64 (2), C‐33 - C‐34. https://doi.org/10.1111/j.1151 2916.1981.tb09570.x Lankford, J. (1996). High strain rate compression and plastic flow of ceramics. Journal of Materials Science Letters , 15 (9), 745 – 750. https://doi.org/10.1007/BF00274593 Lee, H. W., Basaran, C., Egner, H., Lipski, A., Piotrowski, M., Mroziński, S., Bin Jamal M, N., & Lakshmana Rao, C. (2022). Modeling ultrasonic vibration fatigue with unified mechanics theory. International Journal of Solids and Structures , 236 – 237 , 111313. https://doi.org/10.1016/j.ijsolstr.2021.111313 Lee, H. W., Djukic, M. B., & Basaran, C. (2023). Modeling fatigue life and hydrogen embrittlement of bcc steel with unified mechanics theory. International Journal of Hydrogen Energy , 48 (54), 20773 – 20803. https://doi.org/10.1016/j.ijhydene.2023.02.110 Noushad Bin Jamal, N. Bin, Kumar, A., Rao, C. L., & Basaran, C. (2020). Low cycle fatigue life prediction using unified mechanics theory in Ti-6Al-4V alloys. Entropy , 22 (1), 24. https://doi.org/10.3390/e22010024 Paliwal, B., & Ramesh, K. T. (2008). An interacting micro-crack damage model for failure of brittle materials under compression. Journal of the Mechanics and Physics of Solids , 56 (3), 896 – 923. https://doi.org/10.1016/j.jmps.2007.06.012 Ravichandran, G., & Subhash, G. (1995). A micromechanical model for high strain rate behavior of ceramics. International Journal of Solids and Structures , 32 (17 – 18), 2627 – 2646. https://doi.org/10.1016/0020 7683(94)00286-6

Made with FlippingBook Learn more on our blog