PSI - Issue 60
A. Syed et al. / Procedia Structural Integrity 60 (2024) 195–202 A. Syed/ StructuralIntegrity Procedia 00 (2023) 000 – 000
202
8
Fiveland, W.A, Barber, A.R, Lowe Jr., A.L., Parry, G.W., 1977. Rupture Characteristics of Zircaloy-4 Cladding with Internal and External Simulation of Reactor Heating of Zircaloy cladding. In: Summary Report, NUREG/CR-0344 ANL-77-31. Gurson, L., 1977. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology 99, 2-15. Jia, L.J., Kuwamura, H., 2014. Ductile Fracture Simulation of Structural Steels under Monotonic Tension. Journal of Structural Engineering Structural Engineering 140, 1-12. Khan, M.K., Pathak, M., Deo, A.K., Singh, R, 2013. Burst criterion for zircaloy-4 fuel cladding in an inert environment. Nuclear Engineering & Design 265, 886 – 894. McClintock, F.A., 1968. A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics 35, 363-371. Pardoen, T., Doghri, I., Delannay, F., 1998. Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars. Acta Materialia 46, 541 – 552. Rice, J.R., Tracey, D.M., 1969. On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids 17, 201-217. Sawarn, T.K., Banerjee, S., Pandit, K.M., Anantharaman, S, 2014. Study of clad ballooning and rupture behavior of fuel pins of Indian PHWR under simulated LOCA condition. Nuclear Engineering & Design 280, 501 – 510. Sawarn, T.K., Banerjee, S., Sheelvantra, S.S., Singh, J.L., Bhasin, V, 2017. Study of clad ballooning and rupture behaviour of Indian PHWR fuel pins under transient heating condition in steam environment. Journal of Nuclear Materials 495, 332-342. Schiffmann, R., Heyer, J., Dahl, W., Bleck, W., 2000. Experimental determination and computational modelling of the damage development during ductile fracture of a free-cutting steel. Damage & Fracture Mechanics VI 26, 129-138 Shakoor, M., Navas, V.M.T., Muñoz, D.N. Bernacki, M., Bouchard, P.O., 2019. Computational methods for ductile fracture modeling at the microscale. Archives of Computational Methods in Engineering 26, 1153-1192.
Made with FlippingBook Learn more on our blog