PSI - Issue 60

176 12

Chitresh Chandra et al. / Procedia Structural Integrity 60 (2024) 165–176 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

References

Statistics, W.E., 2018. World Energy Statistics 2018. Int. Energy Agency. https://doi.org/10.1787/world_energy_stats-2018-en Maxson, A., & Phillips, J., 2011. Research and Development for Future Coal Generation. Power , 155 (5), 36-36. Saxena, A., 1993. Fracture mechanics approaches for characterizing creep-fatigue crack growth. JSME international journal. Ser. A, Mechanics and material engineering, 36(1), 1-20. Zhao, L., Xu, L., & Nikbin, K., 2017. Predicting failure modes in creep and creep-fatigue crack growth using a random grain/grain boundary idealised microstructure meshing system. Materials Science and Engineering: A , 704 , 274-286. Saxena, A., 2015. Creep and creep – fatigue crack growth. International Journal of Fracture , 191 (1), 31-51. Lu, Y. L., Liaw, P. K., Sun, Y., Wang, G. Y., Thompson, S. A., Blust, J. W., ... & Klarstrom, D. L., 2007. Hold-time effect on the elevated temperature crack growth behavior of solid-solution-strengthened superalloys. Acta materialia , 55 (3), 767-775. ASTM E2760-19e1; Standard Test Method for Creep-Fatigue Crack Growth Testing; ASTM International: West Conshohocken, PA, USA, 2019 Shrestha, T., Alsagabi, S. F., Charit, I., Potirniche, G. P., & Glazoff, M. V., 2015. Effect of heat treatment on microstructure and hardness of Grade 91 steel. Metals , 5 (1), 131-149. Shibli, A., & Starr, F., 2007. Some aspects of plant and research experience in the use of new high strength martensitic steel P91. International journal of pressure vessels and piping , 84 (1-2), 114-122. Quadakkers, W. J., & Żurek, J. , 2010. Oxidation in steam and steam/hydrogen environments. Jianian, S., Longjiang, Z., & Tiefan, L., 1997. High-temperature oxidation of Fe-Cr alloys in wet oxygen. Oxidation of metals , 48 (3), 347-356. Zhong, X., Wu, X., & Han, E. H., 2012. The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant. The Journal of Supercritical Fluids , 72 , 68-77. Babu, S. H., Amarendra, G., Rajaraman, R., & Sundar, C. S., 2013. Microstructural characterization of ferritic/martensitic steels by positron annihilation spectroscopy. In Journal of Physics: Conference Series , Vol. 443, No. 1, p. 012010. Coussement, C., Dhooge, A., De Witte, M., Dobbelaere, R., & Van Der Donckt, E., 1991. High temperature properties of improved 9% Cr steel weldments. International journal of pressure vessels and piping , 45 (2), 163-178. Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N., 2017. Effect of creep phenomena on room-temperature tensile properties of cast & forged P91 steel. Engineering Failure Analysis , 79 , 385-396. Ennis, P. J., & Czyrska-Filemonowicz, A., 2003. Recent advances in creep-resistant steels for power plant applications. Sadhana , 28 , 709-730. Mehmanparast, A., Davies, C. M., & Nikbin, K. M., 2011. Evaluation of the testing and analysis methods in ASTM E2760-10 creep-fatigue crack growth testing standard for a range of steels. Journal of ASTM International , 8 (10), 1-18. Narasimhachary, S. B., & Saxena, A., 2013. Crack growth behavior of 9Cr− 1Mo (P91) steel under creep – fatigue conditions. International Journal of Fatigue , 56 , 106-113. Bassi, F., Foletti, S., & Lo Conte, A., 2015. Creep fatigue crack growth and fracture mechanisms of T/P91 power plant steel. Materials at High Temperatures , 32 (3), 250-255. Ab Razak, N., Davies, C. M., & Nikbin, K. M., 2018. Testing and assessment of cracking in P91 steels under creep-fatigue loading conditions. Engineering Failure Analysis , 84 , 320-330. Lu, Y. L., Chen, L. J., Liaw, P. K., Wang, G. Y., Brooks, C. R., Thompson, S. A., ... & Klarstrom, D. L., 2006. Effects of temperature and hold time on creep-fatigue crack-growth behavior of HAYNES® 230® alloy. Materials Science and Engineering: A , 429 (1-2), 1-10. Chandra, C., Kiranchand, G. R., Teja, C. K., Srinivasa Rao, B., Nani Babu, M., & Narasaiah, N., 2022. Effect of force ratio on creep-fatigue crack growth (CFCG) of P91 steel. Journal of Materials Science , 57 (30), 14478-14489. Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N., 2018. Some studies on P91 steel and their weldments. Journal of Alloys and Compounds , 743 , 332-364. Xu, L., Zhao, L., Han, Y., Jing, H., & Gao, Z., 2017. Characterizing crack growth behavior and damage evolution in P92 steel under creep-fatigue conditions. International Journal of Mechanical Sciences , 134 , 63-74. Shi, K. X., Lin, F. S., Wan, H. B., & Wang, Y. F., 2014. Crack growth behaviour of P92 steel under creep and creep – fatigue conditions. Materials at High Temperatures , 31 (4), 343-347. Narasimha Chary and S. B., 2013. Crack Growth Behavior Under Creep-Fatigue Conditions Using Compact and Double Edge Notch Tension Compression Specimens. (Thesis) Yoon, K. B., Saxena, A., & Liaw, P. K., 1993. Characterization of creep-fatigue crack growth behavior under trapezoidal waveshape using C t parameter. International journal of Fracture , 59 (2), 95-114. Tang, Z., Jing, H., Xu, L., Zhao, L., Han, Y., Xiao, B., ... & Li, H., 2018. Creep-fatigue crack growth behavior of G115 steel under different hold time conditions. International Journal of Fatigue , 116 , 572-583. Saxena, A., 2002. How far have we come in predicting high temperature crack growth and the challenges that remain ahead. In European Structural Integrity Society , Vol. 29, pp. 215-226.

Made with FlippingBook Learn more on our blog