PSI - Issue 6
Mayao Wang et al. / Procedia Structural Integrity 6 (2017) 64–68 M. Wang et al. / Structural Integrity Procedia 00 (2017) 000–000
68
5
Nalla, R.K. Kruzic, J. J., Kinney, J. H., & Ritchie, R. O, 2004. Effect of aging on the toughness of human cortical bone: Evaluation by R-curves. Bone , 35(6), 1240–1246. O’Brien, F.J., Taylor, D. & Lee, T.C., 2005. The effect of bone microstructure on the initiation and growth of microcracks. Journal of Orthopaedic Research , 23(2), 475–480. Schaffler, M.B., Choi, K. & Milgrom, C., 1995. Aging and matrix microdamage accumulation in human compact bone. Bone , 17(6), 521–525. Ural, A. & Mischinski, S., 2013. Multiscale modeling of bone fracture using cohesive finite elements. Engineering Fracture Mechanics , 103, 141–152. Ural, A. & Vashishth, D., 2006. Cohesive finite element modeling of age-related toughness loss in human cortical bone. Journal of Biomechanics , 39(16), 2974–2982. Vashishth, D., Behiri, J.C. & Bonfield, W., 1997. Crack growth resistance in cortical bone: Concept of microcrack toughening. Journal of Biomechanics , 30(8), 763–769. Yeni, Y.N. & Norman, T.L., 2000. Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. Journal of Biomedical Materials Research , 51(3), 504–509 .
Made with FlippingBook. PDF to flipbook with ease