PSI - Issue 58
ScienceDirect Structural Integrity Procedia 00 (2023) 000–000 Structural Integrity Procedia 00 (2023) 000–000 Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Available online at www.sciencedirect.com ScienceDirect
www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia
Procedia Structural Integrity 58 (2024) 48–53
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the ICSID 2023 Organizers Abstract This study deals with the evaluation of corrosion resistance and other utility properties of selected austenitic nodular cast irons and their comparison with other (non-austenitic) nodular cast irons. For the investigations, two types of austenitic nodular cast iron were selected: nickel-manganese nodular cast iron EN-GJSA-XNiMn13-7 and nickel-chromium nodular cast iron EN GJSA-XNiCr20-2. Basic mechanical properties, such as yield strength, tensile strength, elongation, absorbed energy and hardness, were evaluated using mechanical tests. The fatigue limit was determined using low-frequency fatigue tests. Corrosion properties, such as average corrosion rate, corrosion potential and corrosion current density, were determined by the exposure immersion test and the electrochemical potentiodynamic polarisation test. Both corrosion tests were performed in a 3.5% NaCl solution (to simulate seawater) at room temperature. The results of mechanical, fatigue and corrosion tests show that austenitic nodular cast irons have lower strength and fatigue properties but significantly higher plastic properties and corrosion resistance compared to non-austenitic nodular cast irons. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the ICSID 2023 Organizers Keywords: Ni-Resist; NiMn-nodular cast iron; NiCr-nodular cast iron; austenitic matrix; corrosion Abstract This study deals with the evaluation of corrosion resistance and other utility properties of selected austenitic nodular cast irons and their comparison with other (non-austenitic) nodular cast irons. For the investigations, two types of austenitic nodular cast iron were selected: nickel-manganese nodular cast iron EN-GJSA-XNiMn13-7 and nickel-chromium nodular cast iron EN GJSA-XNiCr20-2. Basic mechanical properties, such as yield strength, tensile strength, elongation, absorbed energy and hardness, were evaluated using mechanical tests. The fatigue limit was determined using low-frequency fatigue tests. Corrosion properties, such as average corrosion rate, corrosion potential and corrosion current density, were determined by the exposure immersion test and the electrochemical potentiodynamic polarisation test. Both corrosion tests were performed in a 3.5% NaCl solution (to simulate seawater) at room temperature. The results of mechanical, fatigue and corrosion tests show that austenitic nodular cast irons have lower strength and fatigue properties but significantly higher plastic properties and corrosion resistance compared to non-austenitic nodular cast irons. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the ICSID 2023 Organizers Keywords: Ni-Resist; NiMn-nodular cast iron; NiCr-nodular cast iron; austenitic matrix; corrosion 7th International Conference on Structural Integrity and Durability (ICSID 2023) Corrosion resistance and other utility properties of selected austenitic nodular cast irons Alan Vaško a, *, Viera Zatkalíková a , Juraj Belan a , Milan Uhríčik a , Václav Kaňa b a University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia b Brno University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, Technická 2896/2, Královo Pole, 616 69 Brno, Czech Republic 7th International Conference on Structural Integrity and Durability (ICSID 2023) Corrosion resistance and other utility properties of selected austenitic nodular cast irons Alan Vaško a, *, Viera Zatkalíková a , Juraj Belan a , Milan Uhríčik a , Václav Kaňa b a University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia b Brno University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, Technická 2896/2, Královo Pole, 616 69 Brno, Czech Republic
* Corresponding author. Tel.: +421-41-513 2605. E-mail address: alan.vasko@fstroj.uniza.sk * Corresponding author. Tel.: +421-41-513 2605. E-mail address: alan.vasko@fstroj.uniza.sk
2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the ICSID 2023 Organizers 2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the ICSID 2023 Organizers
2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the ICSID 2023 Organizers 10.1016/j.prostr.2024.05.009
Made with FlippingBook - Online catalogs