PSI - Issue 58
M.R.A. Rahim et al. / Procedia Structural Integrity 58 (2024) 9–16 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
16 8
Mlikota, M, Schmauder, S., Božić, Ž. , 2018. Calculation of the Wöhler (S-N) curve using a two-scale model. International Journal of Fatigue, 114, pp. 289 – 297. Mlikota, Marijo, Schmauder, S., 2020. Multiscale Modelling and Simulation of Metal Fatigue and its Applications. Universität Stuttgart. Mlikota, Marijo, Staib, S., Schmauder, S., Božić, Ž. , 2017. Numerical determination of Paris law constants for carbon steel using a two-scale model Numerical determination of Paris law constants for carbon steel using a two-scale model. Journal of Physics: Conference Series, pp. 1 – 10. Nilsson, K. F., Dolci, F., Seldis, T., Ripplinger, S., Grah, A., Simonovski, I., 2016. Assessment of thermal fatigue life for 316L and P91 pipe components at elevated temperatures. Engineering Fracture Mechanics, 168, pp. 73 – 91. Rahim, M. R. A., Schmauder, S., Manurung, Y. H. P., Binkele, P., Ahmad, M. I. M., Dogahe, K., 2023. Cycle Number Estimation Method on Fatigue Crack Initiation using Voronoi Tessellation and the Tanaka Mura Model. Journal of Failure Analysis and Prevention, 23(2), pp. 548 – 555. Rahim, M. R. B. A., Schmauder, S., Manurung, Y. H. P., Binkele, P., Dusza, J., Iqram, M., Ahmad, M., Mat, M. F., Dogahe, K. J. (2023). Assessing Fatigue Life Cycles of Material X10CrMoVNb9-1 through a Combination of Experimental and Finite Element Analysis. Metals, 13(1947), pp. 1 – 17. Saad, A. A., Hyde, C. J., Sun, W., Hyde, T. H., 2011. Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400-600°C. Materials at High Temperatures, 28(3), pp. 212 – 218. Salifu, S., Desai, D., Kok, S., 2019. Numerical investigation of creep-fatigue interaction of straight P91 steam pipe subjected to start-up and shutdown cycles. Materials Today: Proceedings, 38, pp. 1018 – 1023. Saxena, A., Narasimhachary, S., 2018. Creep-Fatigue Crack Growth Testing of P91 Steel: Result of the Round Robin for Assessing ASTM Standard E-2760-10. Speicher, M., Klenk, A., Coleman, K., 2013. Creep-Fatigue Interactions in P91 Steel. 13th International Conference on Fracture, pp. 1 – 10. Stephens, R. I., Fatemi, A., Stephens, R. R., Fuchs, H. O., 2001. Factors Influencing S – N Behaviour. In Metal Fatigue in Engineering (2nd ed., pp. 79). A Wiley-Interscience publication. Tanaka, K., Mura, T., 1981. A Dislocation Model for Fatigue Crack Initiation. Journal of Applied Mechanics, 48, pp. 97 – 103. Tanaka, K., Mura, T., 1982. A theory of fatigue crack initiation at inclusions. Metallurgical Transactions A, 13A, pp. 117 – 123. Udoh, A., & Speicher, M. (2013). Versuchsdurchführung in Compliancetechnik gemäß MPAS - PA 52220 - 05. Yang, X., Shi, C., Cao, H., Sun, S., Liu, G., 2023. Study on Intelligent Classification of Aging Heat-Resistant Materials. ACS Omega, 8(6), pp. 5300 – 5305. Zhou, J., Barrett, R. A., Leen, S. B., 2021. A physically-based method for predicting high temperature fatigue crack initiation in P91 welded steel. International Journal of Fatigue, 153(August), pp. 1 – 15.
Made with FlippingBook - Online catalogs