PSI - Issue 57
Mohammad F. Tamimi et al. / Procedia Structural Integrity 57 (2024) 121–132 131 Mohammad F. Tamimi & Mohamed Soliman/ Structural Integrity Procedia 00 (2023) 000 – 000 11
Jaimes, F., Farbiarz, J., Alvarez, D., & Martínez, C. (2005). Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Critical Care , 9 (2), 1-7. Khan, N., Gaurav, D., & Kandl, T. (2013). Performance evaluation of Levenberg-Marquardt technique in error reduction for diabetes condition classification. Procedia Computer Science, 18 , 2629-2637. Kunaver, M., Rojec, Ž., Subotić, V., Pereverzyev, S., & Žic, M. (2022). Extraction of distribution function of relaxation times by using drt-rblm tools: A new approach to combine levenberg-marquardt algorithm and radial basis functions for discretization basis. Journal of The Electrochemical Society , 169 (11), 110529. Lin, Y., & Yang, J. (1985). A stochastic theory of fatigue crack propagation. AIAA Journal, 23 (1), 117-124. Ly, H. B., Nguyen, M. H., & Pham, B. T. (2021). Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Computing and Applications , 33 (24), 17331-17351. Mahmoud, H. N., & Dexter, R. J. (2005). Propagation rate of large cracks in stiffened panels under tension loading. Marine Structures , 18 (3), 265-288. Mahmoud, H., & Riveros, G. (2014). Fatigue reliability of a single stiffened ship hull panel. Engineering Structures , 66 , 89-99. Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management Conference . Liverpool, United Kingdom. MathWorks. (2020). MATLAB: the language of technical computing: computation, visualization, programming . Natick, MA, USA: MathWorks. Murthy, A. R. C., Palani, G. S., & Iyer, N. R. (2007). Remaining life prediction of cracked stiffened panels under constant and variable amplitude loading. International Journal of Fatigue , 29 (6), 1125-1139. Nussbaumer, A. C., Fisher, J. W., & Dexter, R. J. (1999). Behavior of long fatigue cracks in cellular box beam. Journal of Structural Engineering , 125 (11), 1232-1238. Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering , 85 (4), 528-533. Poe Jr, C. C. (1969). The effect of riveted and uniformly spaced stringers on the stress intensity factor of a cracked sheet. Fatigue and Fracture of Aircraft Structure and Materials Conference , Miami Beach, FL, USA. Poe Jr, C. C. (1971). Fatigue crack propagation in stiffened panels. In Damage tolerance in aircraft structures (pp. 79- 97). PA, USA: American Society for Testing and Materials (ASTM). Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181 (2), 259-270. Sankararaman, S., Ling, Y., & Mahadevan, S. (2011). Uncertainty quantification and model validation of fatigue crack growth prediction. Engineering Fracture Mechanics , 78 (7), 1487-1504. Simulia. (2018). ABAQUS 6.14: ABAQUS/CAE user’s guide . RI, USA: Dassault Systèmes Simulia Corp. Sobol, I. M. & Levitan, Y. L. (1999). A pseudo -random number generator for personal computers. Computers and Mathematics with Applications , 37 (4-5), 33-40. Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55 (1-3), 271-280.
Made with FlippingBook Ebook Creator