PSI - Issue 57
Martin Matušů et al. / Procedia Structural Integrity 57 (2024) 327 – 334 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
334
8
Acknowledgements The authors acknowledge the support by the Czech Ministry of Education, Youth and Sports within the LUABA22071 project, by the Bavarian-Czech Academic Agency (BTHA-JC-2022-30 project), by the Grant Agency of the Czech Technical University in Prague within the SGS23/156/OHK2/3T/12 project and by ESIF, EU Operational Programme Research, Development and Education, from the Center of Advanced Aerospace Technology (CZ.02.1.01/0.0/0.0/16_ 019/0000826),Faculty of MechanicalEngineering, Czech TechnicalUniversity in Prague is appreciated.The support by Czech Science Foundation (grant No. 23-05338S) is also acknowledged. References [1] L.Růžičková, J.Sobotová, L.Beránek, L.Pelikán, J.Šimota, Influence of Stress Relief Annealing Parameters on Mechanical Properties and Decomposition of Eutectic Si Network of L-PBF Additive Manufactured Alloy AlSi10Mg, Metals. vol. 12 (2022). https://doi.org/10.3390/met12091497. [2] W.Li, S.Li, J.Liu, A.Zhang, Y.Zhou, Q.Wei, C.Yan, Y.Shi, Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism, Materials Science and Engineering: A. vol. 663 (2016) 116-125. https://doi.org/10.1016/j.msea.2016.03.088. [3] C.Zhang, H.Zhu, H.Liao, Y.Cheng, Z.Hu, X.Zeng, Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg, International Journal of Fatigue. vol. 116 (2018) 513-522. https://doi.org/10.1016/j.ijfatigue.2018.07.016. [4] M.Baek, R.Kreethi, T.Park, Y.Sohn, K.Lee, Influence of heat treatment on the high-cycle fatigue properties and fatigue damage mechanism of selective laser melted AlSi10Mg alloy, Materials Science and Engineering: A. vol. 819 (2021). https://doi.org/10.1016/j.msea.2021.141486. [5] N.Aboulkhair, I.Maskery, C.Tuck, I.Ashcroft, N.Everitt, Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality, vol. 104 (2016) 174-182. https://doi.org/10.1016/j.matdes.2016.05.041. [6] M.Matušů, K.Dimke, J.Šimota, J.Papuga, J.Rosenthal, V.Mára, L.Beránek, Energy -based method for analyzing fatigue properties of additively manufactured AlSi10Mg, Journal of Mechanical Science and Technology. 37 (2023) 7. https://doi.org/10.1007/s12206-022-2110-6. [7] G.La Rosa, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, International Journal of Fatigue. vol. 22 (2000) 65-73. https://doi.org/10.1016/S0142-1123(99)00088-2. [8] M.Luong, Fatigue limit evaluation of metals using an infrared thermographic technique, Mechanics of Materials. vol. 28 (1998) 155-163. https://doi.org/10.1016/S0167-6636(97)00047-1. [9] A.Raja, S.Cheethirala, P.Gupta, N.Vasa, R.Jayaganthan, A review on the fatigue behaviour of AlSi10Mg alloy fabricated using laser powder bed fusion technique, Journal of Materials Research and Technology. vol. 17 (2022) 1013-1029. https://doi.org/10.1016/j.jmrt.2022.01.028. [10] J.Kohout, S.Věchet, A new function for fatigue curves characterization and its multiple merits, International Journal of Fatigue. vol. 23 (2001) 175-183. https://doi.org/10.1016/S0142-1123(00)00082-7. [11] N.Torabian, V.Favier, S.Ziaei-Rad, J.Dirrenberger, F.Adamski, N.Ranc, Calorimetric Studies and Self Heating Measurements for a Dual-Phase Steel Under Ultrasonic Fatigue Loading, Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis. (2017) 81-93. https://doi.org/10.1520/STP159820160053. [12] G.Meneghetti, Analysis of the fatigue strength of a stainless steel based on the energy dissipation, International Journal of Fatigue. vol. 29 (2007) 81-94. https://doi.org/10.1016/j.ijfatigue.2006.02.043.
Made with FlippingBook Ebook Creator