PSI - Issue 57
A. Radi et al. / Procedia Structural Integrity 57 (2024) 642–648 Achraf radi/ Structural Integrity Procedia 00 (2019) 000 – 000
648
7
department at Cetim. The authors would like to acknowledge also our colleague E. Conforto for their contributions to the TEM facilities in the LaSIE Laboratory.
References
[1] Risbet Marion, Influence de l’état métallurgique et d’un gradient de contraintes sur le critère d’endurance (critère de dang van) d’un superalliage a base nickel, Thesis, Université de technologie de compiègne, 2002. https://www.theses.fr/2002COMP1436. [2] H.S. HO, Fundamental mechanism of surface damage associated with the localization of the plastic deformation in fatigue, Thesis, Université de technologie de compiègne, 2011. [3] M. McLean, On the threshold stress for dislocation creep in particle strengthened alloys, Acta Metallurgica 33 (1985) 545 – 556. https://doi.org/10.1016/0001-6160(85)90018-5. [4] S. Chatterjee, Y. Li, G. Po, A discrete dislocation dynamics study of precipitate bypass mechanisms in nickel-based superalloys, International Journal of Plasticity 145 (2021) 103062. https://doi.org/10.1016/j.ijplas.2021.103062. [5] V. Ferney, Adoucissement d’un superalliage base nickel sous - vieilli en fatigue oligocyclique, Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics 329 (2001) 843 – 850. https://doi.org/10.1016/S1620-7742(01)01409-X. [6] M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer Singapore, Singapore, 2016. https://doi.org/10.1007/978-981-10 0161-1. [7] M. Nagumo, K. Takai, The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Materialia 165 (2019) 722 – 733. https://doi.org/10.1016/j.actamat.2018.12.013. [8] Z. Tarzimoghadam, D. Ponge, J. Klöwer, D. Raabe, Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation, Acta Materialia 128 (2017) 365 – 374. https://doi.org/10.1016/j.actamat.2017.02.059. [9] I.M. Robertson, The e€ ect of hydrogen on dislocation dynamics q,qq, Engineering Fracture Mechanics (2001). [10] J.I. Dickson, J. Boutin, L. Handfield, A comparison of two simple methods for measuring cyclic internal and effective stresses, Materials Science and Engineering 64 (1984) L7 – L11. https://doi.org/10.1016/0025-5416(84)90083-1. [11] X. Feaugas, On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress, Acta Materialia 47 (1999) 3617 – 3632. https://doi.org/10.1016/S1359-6454(99)00222-0. [12] J. Li, The contribution of the grain boundary engineering to the problem of intergranular hydrogen embrittlement, (n.d.). [13] S. Frappart, A. Oudriss, X. Feaugas, J. Creus, J. Bouhattate, F. Thébault, L. Delattre, H. Marchebois, Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy, Scripta Materialia 65 (2011) 859 – 862. https://doi.org/10.1016/j.scriptamat.2011.07.042. [14] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Materialia 60 (2012) 6814 – 6828. https://doi.org/10.1016/j.actamat.2012.09.004. [15] G. Hachet, A. Oudriss, A. Barnoush, R. Milet, D. Wan, A. Metsue, X. Feaugas, The influence of hydrogen on cyclic plasticity of oriented nickel single crystal. Part I: Dislocation organisations and internal stresses, International Journal of Plasticity 126 (2020) 102611. https://doi.org/10.1016/j.ijplas.2019.09.017. [16] I.M.A. Ghermaoui, A. Oudriss, A. Metsue, R. Milet, K. Madani, X. Feaugas, Multiscale analysis of hydrogen-induced softening in f.c.c. nickel single crystals oriented for multiple-slips: elastic screening effect, Sci Rep 9 (2019) 13042. https://doi.org/10.1038/s41598-019 49420-6. [17] X. Feaugas, D. Delafosse, Hydrogen and Crystal Defects Interactions: Effects on Plasticity and Fracture, in: Mechanics - Microstructure - Corrosion Coupling, Elsevier, 2019: pp. 199 – 222. https://doi.org/10.1016/B978-1-78548-309-7.50009-0. [18] H.K. Birnbaum, P. Sofronis, Hydrogen-enhanced localized plasticity — a mechanism for hydrogen-related fracture, Materials Science and Engineering: A 176 (1994) 191 – 202. https://doi.org/10.1016/0921-5093(94)90975-X. [19] G. Girardin, C. Huvier, D. Delafosse, X. Feaugas, Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel – chromium, Acta Materialia 91 (2015) 141 – 151. https://doi.org/10.1016/j.actamat.2015.03.016. [20] H.S. Ho, M. Risbet, X. Feaugas, On the unified view of the contribution of plastic strain to cyclic crack initiation: Impact of the progressive transformation of shear bands to persistent slip bands, Acta Materialia 85 (2015) 155 – 167. https://doi.org/10.1016/j.actamat.2014.11.020. [21] J.-H. Ai, H.M. Ha, R.P. Gangloff, J.R. Scully, Hydrogen diffusion and trapping in a precipitation-hardened nickel – copper – aluminum alloy Monel K-500 (UNS N05500), Acta Materialia 61 (2013) 3186 – 3199. https://doi.org/10.1016/j.actamat.2013.02.007. [22] E. Hornbogen, K.-H.Z. Gahr, MICROSTRUCTURE AND FATIGUE CRACK GROWTH, (n.d.). [23] L. Cretegny, A. Saxena, AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper, Acta Materialia 49 (2001) 3755 – 3765. https://doi.org/10.1016/S1359-6454(01)00271-3. [24] M. Risbet, Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy, Scripta Materialia 49 (2003) 533 – 538. https://doi.org/10.1016/S1359-6462(03)00357-9.
Made with FlippingBook Ebook Creator