PSI - Issue 57

Tobias Pertoll et al. / Procedia Structural Integrity 57 (2024) 250–261 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

260

11

Future research work aims to extend the presented results and to validate them with component tests. Moreover, the research includes the influence of further deep rolling parameters, different railway axle materials and geometries.

References Altenberger, Igor (2005): Deep Rolling - The Past, the Present and the Future. University of Kassel, Institute of Materials Engineering, Monchebergstrasse 3, 34125 Kassel, Germany 2005, pp. 144 – 155. Berstein, G.; Fuchsbauer, B. (1982): Festwalzen und Schwingfestigkeit. In Z. Werkstofftechnik 1982 (13), pp. 103 – 109. Carboni, M.; Beretta, S. (2007): Effect of probability of detection upon the definition of inspection intervals for railway axles. In Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 221 (3), pp. 409 – 417. DOI: 10.1243/09544097JRRT132. Delgado, P.; Cuesta, I. I.; Alegre, J. M.; Díaz, A. (2016): State of the art of Deep Rolling. In Precision Engineering 46, pp. 1 – 10. DOI: 10.1016/j.precisioneng.2016.05.001. Fracture Analysis Consultants (2023): FRANC3D. Fracture Analysis Consultants. Available online at http://fracanalysis.com/, checked on 5/22/2023. Gänser, Hans-Peter; Kunter, Karlheinz; Weber, Franz-Josef (2021): Eisenbahnfahrwerke 3. Final Report. Gao, Jie-Wei; Dai, Xin; Zhu, Shun-Peng; Zhao, Jun-Wen; Correia, José A.F.O.; Wang, Qingyuan (2022): Failure causes and hardening techniques of railway axles – A review fromthe perspective of structural integrity. In Engineering Failure Analysis 141, p. 106656. DOI: 10.1016/j.engfailanal.2022.106656. Gao, Jie-Wei; Han, Rui-Peng; Zhu, Shun-Peng; Zhao, Hai; Correia, José A.F.O.; Wang, Qingyuan (2023): Influence of induction hardening on the damage tolerance of EA4T railway axles. In Engineering Failure Analysis 143, p. 106916. DOI: 10.1016/j.engfailanal.2022.106916. Hassani-Gangaraj, S. M.; Carboni, M.; Guagliano, M. (2015): Finite element approach toward an advanced understanding of deep rolling induced residual stresses, and an application to railway axles. In Materials & Design 83, pp. 689 – 703. DOI: 10.1016/j.matdes.2015.06.026. Hu, Yanan; Wu, Shengchuan; Withers, Philip J.; Cao, Huatang; Chen, Pei; Zhang, Yajun et al. (2021): Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. In Engineering Fracture Mechanics 245, p. 107588. DOI: 10.1016/j.engfracmech.2021.107588. INARA (2022): INARA. INtegrity Assessment for Railway Axles. Version 5-9-2022_11-19. Leoben, Austria: Materials Center Leoben Forschungs GmbH. Lütkepohl, K; Esderts, A; Luke, M; Varfolomeev, I (2009): Abschlussbericht: "Sicherer und wirtschaftlicher Betrieb von Eisenb ahnfahrwerken". Band I - Hauptteil 2009. Mahmoudi, A. H.; Ghasemi, A.; Farrahi, G. H.; Sherafatnia, K. (2016): A comprehensive experimental and numerical study on red istribution of residual stresses by shot peening. In Materials & Design 90, pp. 478 – 487. DOI: 10.1016/j.matdes.2015.10.162. Maierhofer, Jürgen (2014): Damage tolerance and strength increase of drivetrain components. Dissertation. Material Center Leo ben, Leoben. Erich Schmid Institute of Materials Science. MCL (2020): Development of IC-MPPE relevant software tools.Innovativ and useful software solutions for material, process and product development are approved in industry and science 2020. MCL (2023): Development of IC-MPPE relevant software tools.Innovativ and useful software solutions for material, process and product development are approved in industry and science. With assistance of Jürgen Maierhofer. MCL Materials Center Leoben Forschung GmbH. Available online at https://www.mcl.at/en/research/highlights/highlights/development-of-ic-mppe-relevant-software-tools/, checked on 5/18/2023. MSC Software (2020): Marc Volume A: Theory and User Information - 2020 FP1. Pertoll, Tobias; Buzzi, Christian; Dutzler, Andreas; Leitner, Martin; Seisenbacher, Benjamin; Winter, Gerhard; Boronkai, László (2023a): Experimental and numerical investigation of the deep rolling process focussing on 34CrNiMo6 railway axles. In Int J Mater Form 16 (5). DOI: 10.1007/s12289-023-01775-y. Pertoll, Tobias; Buzzi, Christian; Leitner, Martin; Boronkai, László (2023b): Numerical parameter sensitivity analysis of residual stresses induced by deep rolling for a 34CrNiMo6 steel railway axle. (under review). Pourheidar, Amir; Patriarca, Luca; Beretta, Stefano; Regazzi, Daniele (2021): Investigation of Fatigue Crack Growth in Full-Scale Railway Axles Subjected to Service Load Spectra: Experiments and Predictive Models. In Metals 11 (9), p. 1427. DOI: 10.3390/met11091427. EN 13261: 2020, 2020: Railway applications - Wheelsets and bogies - Axles - Product requirements. EN 13103-1: 2017+A1, 2022: Railway applications - Wheelsets and bogies - Part 1: Design method for axles with external journals.

Made with FlippingBook Ebook Creator