PSI - Issue 57

Jeroen Van Wittenberghe et al. / Procedia Structural Integrity 57 (2024) 95–103 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

103

9

References

Azimi M, Eslamlou AD, Pekcan G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors. 2020; 20(10):2778. https://doi.org/10.3390/s20102778 EN 13001-3-1, Limit States and proof competence of steel structure, (2019) EN 1991-3, Actions induced by cranes and machinery, (1991) FEM 1.001 , “Rules for the Design of Hoisting Appliances”, 1998, European Materials Handling Federation. Hectors, K., De Waele, W., Loccufier, M., De Backer, H. (2019). “ A Numerical framework for fatigue lifetime prediction of complex welded structures ” . Frattura ed Integrità Strutturale. 14. 552-566. 10.3221/IGF-ESIS.51.42. A. Moallemi, A. Burrello, D. Brunelli and L. Benini, "Model-based vs. Data-driven Approaches for Anomaly Detection in Structural Health Monitoring: a Case Study," 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, United Kingdom, 2021, pp. 1-6, doi: 10.1109/I2MTC50364.2021.9459999. Santos, F., Noppe, N., Weijtjens, W., Devriendt, C., “ SCADA-based neural network thrust load model for fatigue assessment: cross validation with in-situ measurements ”, 2020 J. Phys.: Conf. Ser. 1618 022020, DOI 10.1088/1742-6596/1618/2/022020 Sadeghi, N., Weil, M., Noppe, N., Weijtjens, W.,Devriendt, C., “ Fatigue Analysis on Four Months of Data on a Steel Railway Bridge: Event Detection and Train Features’ Effect on Fatigue Damage” , European Workshop on Structural Health Monitoring (pp.669-679), 2023, doi:10.1007/978-3-031-07322-9_67. Yoon, J., Lee, J., Kim, G. et al. Deep neural network-based structural health monitoring technique for real-time crack detection and localization using strain gauge sensors. Sci Rep 12, 20204 (2022). https://doi.org/10.1038/s41598-022-24269-4. ZUO, Y., Zhao, F., Yang, K.,& Yang, R. (2021). FatigueLife Assessment of Tower Crane Based on Neural Network to Obtain Stre ss Spectrum. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-1074638/v1

Made with FlippingBook Ebook Creator