PSI - Issue 57
Ahmad Qaralleh et al. / Procedia Structural Integrity 57 (2024) 649–657 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
657
9
a combined hardening behavior of hardening and softening to stabilization. Analysis of the cyclic stress reveals that the material exhibits a wavy sliding behavior. Additionally, the FKM guideline nonlinear approach for estimating the fatigue lifetime of the material encountered limitations due to the dominant influence of load time history and the unaccounted transient behavior. These factors highlight the need for further investigation and alternative methodologies to accurately assess the fatigue performance of the material. Particularly, the employment of P RAM with the material properties obtained from the constant amplitude loading showed the closest estimate compared to the other different variants considered. Acknowledgments The authors acknowledge the Federal Ministry for Economic Affairs and Climate Action (Bundesministerium für Wirtschaft und Klimaschutz) via the research association AiF for funding this research under the grant Nr. 20873 N. References Basquin, O., 1910. The exponential law of endurance tests. Proceedings ASTM, Volume 10, pp. 625-630. Bergmann, J., Klee, S. & Seeger, T., 1977. The effect of mean strain and mean stress on the cyclic stress-strain and failure behavior of steel.. 70. Materialpruefung 19, pp. 10-17. Coffin, L. J., 1954. A study on the effect of cyclic thermal stresses on a ductile metal. Trans. ASME 76, pp. 931-950. Elek, L. et al., 2015. New Bainitic Steel for cyclic loaded safety parts with improved cyclic material behavior. Procedia Engineering, Issue 101, pp. 151-158. Fiedler, M. et al., 2019. Rechnerischer Festigkeitsnachweis für Maschinenbauteile unter expliziter Erfassung nicht linearen Werkstoffverformungsverhaltens, FKM-Richtlinie Nichtlinear. VDMA-Verlag. Gassner, E., 1983. Vademecum der Betriebsfestigkeit (The Handbook of Structural Durability). Teil 1(B), pp. 39-47. Landgraf, R. W., Morrow, J. & Endo, T., 1969. Determination of the cyclic stress-strain curve. Journal of Materials, Volume 4, pp. 176-188. Manson, S., 1965. Fatigue: A complex subject – some simple approximations. Experimental Mechanics 5, Volume Bd. 7, pp. 45-87. Morrow, J., 1965. Cyclic plastic strain energy and fatigue of metals. ASTM STP 278, pp. 47-87. Neuber, H., 1985. Kerbspannungslehre (Theory of stress concentration). Springer‐Verlag, Volume 3. Auflage. Ramberg, W. & Osgood, W. R., 1943. Description of stress-strain curves by three parameters. NACA Tech Note, Issue No. 902. Schade, C. et al., 2016. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A BAINITIC PM STEEL. International Journal of Powder Metallurgy, 52(2). Stieben, A., Bleck, W. & Schönborn, S., 2016. Lufthärtender duktiler Stahl mitmittlerem Mangangehalt für die Massivumformung (Air hardening ductile steel with medium manganese content for forging). massivUMFORMUNG, September.p. 50 – 55. Vormwald, M., 1989. Anrißlebensdauervorhersage auf der Basis der Schwingbruchmechanik für kurze Risse.. Institut für Stahlbau und Werkstoffmechanik der Technischen Universität Darmstadt. Wagener, R. & Schatz, M., 2005. Leichtbau mit Hilfe von Zyklichen Werkstoffkenwerten für Strukturen aus Feinblech (Lightweight construction with the help of cyclic material values for structures made of thin sheet metal). FAT-Schriftenreihe Nr. 191.. Wirths, V., Elek, L., Bleck, W. & Melz, T., 2015. Schmiedestähle mit verbesserter Betriebsfestigkeit durch verformungs-induzierte Phasenumwandlung (Forged steels with improved fatigue strength through deformation-induced phase transformation), s.l.: Abschlussbericht, IGF-374 ZN der Forschungsvereinigung Forschungsgesellschaft Stahlverformung e.V. FSV.
Made with FlippingBook Ebook Creator