PSI - Issue 57
Khashayar Shahrezaei et al. / Procedia Structural Integrity 57 (2024) 711–717 K. Shahrezaei et al. / Structural Integrity Procedia 00 (2023) 000–000
717
7
• The developed framework performing metamodel-based GSA is shown to be e ffi cient for identifying the most influential and important defect factors to maximize knowledge and enable a more e ffi cient simulation process for fatigue prediction. • With regards to the case study, using the given experimental data for the investigated material, the GSA indicates that the material properties could be improved mainly by focusing on minimizing the void size.
Acknowledgements
The authors would like to acknowledge the Centre for ECO2 Vehicle Design, funded by the Swedish Innovation Agency Vinnova (Grant Number 2016-05195), and Scania CV AB for financial support.
References
Burnaev, E., Panin, I., Sudret, B., 2017. E ffi cient design of experiments for sensitivity analysis based on polynomial chaos expansions. URL: http://arxiv.org/abs/1705.03944 . arXiv:1705.03944 [stat]. Dai, W., Milenkovic, O., 2009. Subspace Pursuit for Compressive Sensing Signal Reconstruction. IEEE Transactions on Information Theory 55, 2230–2249. URL: http://ieeexplore.ieee.org/document/4839056/ , doi: 10.1109/TIT.2009.2016006 . De Almeida, S.F.M., Neto, Z.D.S.N., 1994. E ff ect of void content on the strength of composite laminates. Composite Structures 28, 139–148. URL: https://linkinghub.elsevier.com/retrieve/pii/0263822394900442 , doi: 10.1016/0263-8223(94)90044-2 . Eliasson, S., Berg, L.J.W., Wennhage, P., Hagnell, M.K., Barsoum, Z., 2022a. Fatigue and Damage Assessment of CFRP Material Using Digital Image Correlation. Procedia Structural Integrity 38, 631–639. URL: https://linkinghub.elsevier.com/retrieve/pii/ S2452321622004565 , doi: 10.1016/j.prostr.2022.04.065 . Eliasson, S., Karlsson Hagnell, M., Wennhage, P., Barsoum, Z., 2022b. An Experimentally Based Micromechanical Framework Exploring E ff ects of Void Shape on Macromechanical Properties. Materials 15, 4361. URL: https://www.mdpi.com/1996-1944/15/12/4361 , doi: 10. 3390/ma15124361 . Forrester, A.I.J., So´bester, A., Keane, A.J., 2008. Engineering design via surrogate modelling: a practical guide. J. Wiley, Chichester, West Sussex, England ; Hoboken, NJ. Gratiet, L.L., Marelli, S., Sudret, B., 2015. Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, in: Ghanem, R., Higdon, D., Owhadi, H. (Eds.), Handbook of Uncertainty Quantification. Springer International Publishing, Cham, pp. 1–37. URL: http://link.springer.com/10.1007/978-3-319-11259-6_38-1 , doi: 10.1007/978-3-319-11259-6_38-1 . Huang, H., Talreja, R., 2005. E ff ects of void geometry on elastic properties of unidirectional fiber reinforced composites. Composites Science and Technology 65, 1964–1981. URL: https://linkinghub.elsevier.com/retrieve/pii/S0266353805000941 , doi: 10.1016/j. compscitech.2005.02.019 . Lindahl, M., Sundin, E., 2013. Product Design Considerations for Improved Integrated Product / Service O ff erings, in: Kau ff man, J., Lee, K.M. (Eds.), Handbook of Sustainable Engineering. Springer Netherlands, Dordrecht, pp. 669–689. URL: http://link.springer.com/10. 1007/978-1-4020-8939-8_62 , doi: 10.1007/978-1-4020-8939-8_62 . Liu, Y., Elham, A., Horst, P., Hepperle, M., 2018. Exploring Vehicle Level Benefits of Revolutionary Technology Progress via Aircraft Design and Optimization. Energies 11, 166. URL: http://www.mdpi.com/1996-1073/11/1/166 , doi: 10.3390/en11010166 . Maragoni, L., Carraro, P.A., Quaresimin, M., 2021. Influence of manufacturing-induced defects on the fatigue performances of autoclave moulded laminates. Advanced Manufacturing: Polymer & Composites Science 7, 36–47. URL: https://www.tandfonline.com/doi/full/10. 1080/20550340.2021.1967650 , doi: 10.1080/20550340.2021.1967650 . Marelli, S., Lu¨then, N., Sudret, B., 2022. UQLab user manual – Polynomial chaos expansions. Report UQLab-V2.0-104 Report UQLab-V2.0-104. Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland. Mehdikhani, M., Gorbatikh, L., Verpoest, I., Lomov, S.V., 2019. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and e ff ects on mechanical performance. Journal of Composite Materials 53, 1579–1669. URL: http://journals.sagepub. com/doi/10.1177/0021998318772152 , doi: 10.1177/0021998318772152 . Saltelli, A. (Ed.), 2004. Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, Hoboken, NJ. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications 181, 259–270. URL: https://linkinghub.elsevier.com/ retrieve/pii/S0010465509003087 , doi: 10.1016/j.cpc.2009.09.018 . Sisodia, S., Gamstedt, E.K., Edgren, F., Varna, J., 2015. E ff ects of voids on quasi-static and tension fatigue behaviour of carbon-fibre composite laminates. Journal of Composite Materials 49, 2137–2148. URL: http://journals.sagepub.com/doi/10.1177/0021998314541993 , doi: 10.1177/0021998314541993 . Sobol’, I.M., 1990. Sensitivity estimates for nonlinear mathematical model. Matem. Modelirovanie 2 (1) (1990) 112–118 (in Russian), MMCE, 1(4) (1993) 407–414 (in English) 1990. The MathWorks, I., 2022. Statistics and Machine Learning Toolbox Version 12.3 (R2022a). URL: https://www.mathworks.com .
Made with FlippingBook Ebook Creator