PSI - Issue 57
Giorgio A. B. Oliveira et al. / Procedia Structural Integrity 57 (2024) 228–235 Giorgio A. B. Oliveira et al./ Structural Integrity Procedia 00 (2023) 000 – 000
235
8
Acknowledgments
The authors are grateful to the support provided by CNPq, Brazil (contract 305302/2017-5) and CAPES, Brazil (Financial Code 01). The administrative support of FINATEC is also acknowledged. References Almeida, G. M. J., Cardoso, R. A., Chassaing, G., Pommier, S., Araújo, J. A., 2023, Fretting fatigue of Inconel 718 at room and elevated temperatures considering both constant and cyclic normal contact loads, Tribology International, 183, p. 108382 Brito Oliveira, G. A., Cardoso, R. A., Freire Júnior, R. C. S., Araújo, J. A., 2022, A hybrid ANN-multiaxial fatigue nonlocal model to estimate fretting fatigue life for aeronautical Al alloys, International Journal of Fatigue, 162, p. 108250 Brito Oliveira, G. A., Freire Júnior, R. C. S., Conte Mendes Veloso, L. A., Araújo, J. A., 2023, A generalized ANN-multiaxial fatigue nonlocal approach to compute fretting fatigue life for aeronautical Al alloys, Tribology International, 180, p. 107011. Dieu, B., Fouvry, S., Doquet, V., Bridier, F., 2023, Predicting fretting-fatigue endurance of rotating bending shrink-fitted assemblies using a sequential RUIZ-SWT approach: The effect of entrapped debris layer, Tribology International, 186, p. 108593. Glodek, G., Nazabal, A., Llavori, I., Talemi, R., 2023, Numerical modelling of microstructure inhomogeneity to reproduce experimentally observed scatter in fretting fatigue lifetimes, Tribology International, 185. Han, S., Khatir, S., Wang, C., Abdel Wahab, M., 2023, An improved Artificial Neural Network for the direct prediction of fretting fatigue crack initiation lifetime, Tribology International, 183(February), p. 108411. Haykin, S. (2008) Neural Networks and Learning Machines Haykin. Pearson; 3. Kouanga, C. T., Jones, J. D., Revill, I., Wormald, A., Nowell, D., Dwyer -Joyce, R. S., Susmel, L., 2023, A variable amplitude fretting fatigue life estimation technique: Formulation and experimental validation, Tribology International, 178(PA), p. 108055. Liu, Y. and Yuan, H., 2023, A hierarchical mechanism-informed neural network approach for assessing fretting fatigue of dovetail joints, International Journal of Fatigue, 168, p. 107453. Matos, I. M., Araújo, J. A. and Castro, F. C., 2023, Life prediction of 6201-T81 aluminum alloy wires under fretting fatigue and variable amplitude loading, Tribology International, 183, p. 108407. Moreno-Rubio, M., Vázquez, J., Navarro, C., Domínguez, J., 2023, Experimental study on the fretting fatigue of Inconel 718 superalloy, Tribology International, 186. Nowell, D., Dini, D. and Hills,D. A., 2006, Recent developments in theunderstanding of fretting fatigue, Engineering Fracture Mechanics, 73(2), pp. 207 – 222. Pinto, A. L., Almeida, G. M. J., Talemi, R., Araújo, J. A., 2023, Fretting fatigue under variable amplitude shear loading blocks considering partial slip regime: Experimental/numerical analysis, Tribology International, 182, p. 108367. Rousseau, G., Montebello, C., Guilheme, Y., Pommier, S., 2019, A novel approach to model fretting-fatigue in multiaxial and non-proportional loading conditions, International Journal of Fatigue, 126, pp. 79 – 89. Susmel, L. and Lazzarin, P., 2002, A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment, Fatigue and Fracture of Engineering Materials and Structures, 25(1), pp. 63 – 78.
Made with FlippingBook Ebook Creator