PSI - Issue 57

Jan Schubnell et al. / Procedia Structural Integrity 57 (2024) 112–120 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

119

8

References

Anthes, R., Köttgen, V. and Seeger, T. (1993) ‘Kerbformzahlen von Stumpfstößen und Doppel -T- Stößen’, Schweißen und Schneiden , 45(12), pp. 685 – 688. Barsoum, Z. and Jonsson, B. (2011) ‘Influence of weld quality on the fatigue strength in seam welds’, Engineering Failure Analysis , 18(3), pp. 971 – 979. doi: 10.1016/J.ENGFAILANAL.2010.12.001. Dabiri, M. et al. (2017) ‘Utilizing artificial neural networks for stress concentration factor calculation in butt welds’, Journal of Constructional Steel Research , 138, pp. 488 – 498. doi: 10.1016/J.JCSR.2017.08.009. Dänekas, C. et al. (2022) ‘Influence of deep rolling on surface layer condition and fatigue life of steel welded joints’, International Journal of Fatigue , 162, p. 106994. doi: 10.1016/J.IJFATIGUE.2022.106994. Hensel, J. et al. (2018) ‘Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength’, Engineering Fracture Mechanics , 198, pp. 123 – 141. doi: 10.1016/J.ENGFRACMECH.2017.10.024. Hobbacher, A. F. (2016) Recommendations for Fatigue Design of Welded Joints and Components . 2th illust. Edited by C. Mayer. Springer. doi: 10.1007/978-3-319-23757-2_1. Hultgren, G. and Barsoum, Z. (2020) ‘Fatigue assessment in welded joints based on geometrical variations measured by laser scanning’, Welding in the World , 64(11), pp. 1825 – 1831. doi: 10.1007/s40194-020-00962-8. Kaleci, B., Turgut, K. and Dutagaci, H. (2022) ‘2DLaserNet: A deep learning architecture on 2D laser scans for semantic class ification of mobile robot locations’, Engineering Science and Technology, an International Journal , 28, p. 101027. doi: 10.1016/J.JESTCH.2021.06.007. Kiyak, Y., Madia, M. and Zerbst, U. (2016) ‘Extended parametric equations for weld toe stress concentration factors and throu gh-thickness stress distributions in butt- welded plates subject to tensile and bending loading’, Welding in the World 2016 60:6 , 60(6), pp. 1247 – 1259. doi: 10.1007/S40194-016-0377-X. Kucharczyk, P. et al. (2018) ‘Fracture - mechanics based prediction of the fatigue strength of weldments. Material aspects’, Engineering Fracture Mechanics , 198, pp. 79 – 102. doi: 10.1016/j.engfracmech.2017.09.010. Lawrence, F. V, Ho, N. J. and Mazumdar, P. K. (1981) ‘Predicting the Fatigue Resistance of Welds’, Annual Review of Materials Science , 11(1), pp. 401 – 425. doi: 10.1146/annurev.ms.11.080181.002153. Lieurade, H. P., Huther, I. and Lefebvre, F. (2008) ‘Effect of Weld Quality and Postweld Improvement Techniques on the Fatigu e Resistance of Extra High Strength Steels’, Welding in the World , 52(7 – 8), pp. 106 – 115. Ning Nguyen, T. and Wahab, M. A. (1995) ‘A theroretical study of the effect of geometry parameters on the fatigue crack propogation life’, Engineering Facture Mechanics , 51(1), pp. 1 – 18. Oswald, M., Mayr, C. and Rother, K. (2019) ‘Determination of notch factors for welded cruciform joints based on numerical ana lysis and metamodeling’, Welding in the World , 63(5), pp. 1339 – 1354. doi: 10.1007/s40194-019-00751-y. Oswald, M., Neuhäusler, J. and Rother, K. (2020) ‘Determination of notch factors for welded butt joints based on numerical an alysis and metamodeling’, Welding in the World , 64(12), pp. 2053 – 2074. doi: 10.1007/s40194-020-00982-4. Ottersböck, M. J., Leitner, M. and Stoschka, M. (2021) ‘Characterisation of actual weld geometry and stress concentration of butt welds exhibiting local undercuts’, Engineering Structures , 240, p. 112266. doi: 10.1016/J.ENGSTRUCT.2021.112266. Qi, Charles R. et al. (2017) ‘PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation’, pp. 652– 660. Qi, Charles Ruizhongtai et al. (2017) ‘PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space’, Advances in Neural Information Processing Systems , 30. Rainer, G. (1978) Errechnen von Spannungen in Schweißverbindungen mit der Methode der Finiten Elemente . Technical Univercity of Darmstadt. Renken, F. et al. (2021) ‘An algorithm for statistical evaluation of weld toe geometries using laser triangulation’, International Journal of Fatigue , 149, p. 106293. doi: 10.1016/J.IJFATIGUE.2021.106293. Schork, B. et al. (2017) ‘The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength’, Engineering Fracture Mechanics , 198, pp. 103 – 122. doi: https://doi.org/10.1016/j.engfracmech.2017.07.001. Schork, B. et al. (2020) ‘Effect of the parameters of weld toe geometry on the FAT class as obtained by means of fracture mechanics -based simulations’, Welding in the World , 64(6), pp. 925 – 936. doi: 10.1007/S40194-020-00874-7/FIGURES/14.

Made with FlippingBook Ebook Creator