PSI - Issue 57
Camilo Gonzalez Olier et al. / Procedia Structural Integrity 57 (2024) 658–669 Camilo Andres Gonzalez Olier/ Structural Integrity Procedia 00 (2019) 000 – 000
669
12
numerical simulation. Eng Struct 2013;52:153 – 67. https://doi.org/10.1016/j.engstruct.2013.02.033.
[15] Gonzales H, López-Almansa F. Seismic performance of buildings with thin RC bearing walls. Eng Struct 2012;34:244 – 58. https://doi.org/10.1016/j.engstruct.2011.10.007. [16] I.C.O.N.T.E.C. NTC 5806. Alambre de acero liso y grafilado y mallas electrosoldadas para refuerzo de concreto. NTC n.d.;5806. [17] ASTM. ASTM A1064, “Standard Specification for Carbon -Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.” . United States: 2019. [18] Blandón C, Bonett R. Thin slender concrete rectangular walls in moderate seismic regions with a single reinforcement layer. J Build Eng n.d.;28:101035. https://doi.org/10.1016/J.JOBE.2019.101035. [19] Arteta CA. Global and local demand limits of thin reinforced concrete structural wall building systems. 16th world Conf. Earthq. Eng., Accessed: n.d., p. 13. [20] E8 ASTM. Standard Test Methods for Tension Testing of Metallic Materials n.d.:1 – 28,. https://doi.org/10.1520/E0008_E0008M-22. [21] E606-4 ASTM. Standard Practice for Strain-Controlled Fatigue Testing n.d.:1 – 16,. https://doi.org/10.1520/E0606_E0606M-21. [22] Gonzales H, López F. Seismic performance of buildings with thin RC bearing walls. Eng Struct n.d.;34:244 – 258,. https://doi.org/10.1016/j.engstruct.2011.10.007. [23] Dowling NE. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 4th ed. Boston, MA: Pearson; n.d. [24] Walter R, William O. Description of stress-strain curves by three parameters n.d. [25] Basan R, Franulović M, Prebil I, Kunc R. Study on Ramberg -Osgood and Chaboche models for 42CrMo4 steel and some approximations. J Constr Steel Res n.d.;136:65 – 74,. https://doi.org/10.1016/j.jcsr.2017.05.010. [26] Patwardhan PS, Nalavde RA, Kujawski D. An Estimation of Ramberg- Osgood Constants for Materials with and without Luder’s Strain Using Yield and Ultimate Strengths. Procedia Struct Integr n.d.;17:750 – 757,. https://doi.org/10.1016/j.prostr.2019.08.100. [27] Mostaghel N. Inversion of Ramberg Osgood equation and description of hysteresis loops. Int J Non Linear Mech 2002;37:1319 – 35. [28] Jing, Li; Zhongping Z. An improved method for estimation of Ramberg – Osgood curves of steels from monotonic tensile properties. Fatigue Fract Eng Mater Struct 2015;39. https://doi.org/10.1111/ffe.12366. [29] Sireteanu T, Mitu A-M, Giuclea M, Solomon O. A comparative study of the dynamic behavior of Ramberg – Osgood and Bouc – Wen hysteresis models with application to seismic protection devices. Eng Struct n.d.;76:255 – 269,. https://doi.org/10.1016/j.engstruct.2014.07.002. [30] Kamaya M, Kawakubo M. True stress-strain curves of cold worked stainless steel over a large range of strains. J Nucl Mater 2014;451:264 – 75. https://doi.org/10.1016/j.jnucmat.2014.04.006. [31] Bai L, Wadee MA, Köllner A, Yang J. Variational modelling of local – global mode interaction in long rectangular hollow section struts with Ramberg – Osgood type material nonlinearity. Int J Mech Sci n.d.;209:106691. https://doi.org/10.1016/J.IJMECSCI.2021.106691.
Made with FlippingBook Ebook Creator