PSI - Issue 57

Lucas Carneiro Araujo et al. / Procedia Structural Integrity 57 (2024) 144–151 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

151

8

Acknowledgements The authors would like to acknowledge the financial support provided by Fundação de Apoio a Pesquisa do Distrito Federal (FAP-DF) y means of the project entitled “Fadiga em Vira requins de Grupos Geradores” , Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) - Financing Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). References Araújo, L. C., Machado, P. V. S., Pereira, M. V. S., & Araújo, J. A. (2019). An alternative approach to calibrate multiaxial fatigue models of steels with small defects. Procedia Structural Integrity, 19, 19 – 26. https://doi.org/10.1016/j.prostr.2019.12.004 Beretta, S., & Murakami, Y. (1998). Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue and Fracture of Engineering Materials and Structures, 21(9), 1049 – 1065. https://doi.org/10.1046/j.1460-2695.1998.00104.x Castro, F. C., Mamiya, E. N., & Bemfica, C. (2019). A critical plane model to multiaxial fatigue of metals containing small defects. Dowling, N. E. (2013). Mechanical Behavior of Materials - Engineering Methods for Deformation, Fracture, and Fatigue (Fourth Edi). Pearson Education Limited. Endo, M. (1999). Effects of small defects on the fatigue strength of steel and ductile iron under combined axial/torsional loading. In Small Fatigue Cracks (pp. 375 – 387). https://doi.org/10.1016/b978-008043011-9/50035-1 Endo, M., & Ishimoto, I. (2006). The fatigue strength of steels containing small holes under out-of-phase combined loading. International Journal of Fatigue, 28(5 – 6), 592 – 597. https://doi.org/10.1016/j.ijfatigue.2005.05.013 ENDO, M., & ISHIMOTO, I. (2007). Effects of Phase Difference and Mean Stress on the Fatigue Strength of Small-Hole-Containing Specimens Subjected to Combined Load. Journal of Solid Mechanics and Materials Engineering, 1(3), 343 – 354. https://doi.org/10.1299/jmmp.1.343 Endo, M., & McEvily, A. J. (2011). Fatigue crack growth from small defects under out-of-phase combined loading. Engineering Fracture Mechanics, 78(8), 1529 – 1541. https://doi.org/10.1016/j.engfracmech.2010.12.011 Endo, M., & Yanase, K. (2014). Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics, 69, 34 – 43. https://doi.org/10.1016/j.tafmec.2013.12.005 Ferreira, J. L. A., Dias, J. N., Cardoso, E. U., Araújo, J. A., & da Silva, C. R. M. (2022). A contribution to the identification of the critical plane using the maximum variance method. International Journal of Fatigue, 165. https://doi.org/10.1016/j.ijfatigue.2022.107228 Groza, M., Nadot, Y., & Varadi, K. (2018). Defect size map for nodular cast iron components with ellipsoidal surface defects based on the defect stress gradient approach. International Journal of Fatigue, 112, 206 – 215. https://doi.org/10.1016/j.ijfatigue.2018.03.025 Karolczuk, A., Nadot, Y., & Dragon, A. (2008). Non-local stress gradient approach for multiaxial fatigue of defective material. Computational Materials Science, 44(2), 464 – 475. https://doi.org/10.1016/j.commatsci.2008.04.005 Machado, P. V. S., Araújo, L. C., Soares, M. V., Reis, L., & Araújo, J. A. (2020). Multiaxial fatigue assessment of steels with non-metallic inclusions by means of adapted critical plane criteria. Theoretical and Applied Fracture Mechanics, 108, 102585. https://doi.org/10.1016/j.tafmec.2020.102585 Murakami, Y. (1994). Inclusion rating by statistics of extreme values and its application to fatigue strength prediction and quality control of materials. Journal ofResearchof theNational Institute of Standards and Technology, 99(4), 345. https://doi.org/10.6028/jre s.099.032 Murakami, Y. (2012). Material defects as the basis of fatigue design. International Journal of Fatigue, 41, 2 – 10. https://doi.org/10.1016/j.ijfatigue.2011.12.001 Murakami, Y. (2019). Metal fatigue: Effects of small defects and nonmetallic inclusions. In Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. https://doi.org/10.1016/C2016-0-05272-5 Murakami, Y., & Endo, M. (1986). Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defect s. In: K.J. Miller and E.R. de los Rios (Eds): The Behaviour of Short Fatigue Cracks. Mech. Eng. Publ., EGF Publ., 275 – 293. Murakami, Y., & Endo, M. (1994). Effects of defects, inclusions and inhomogeneities on fatigue strength. International Journal of Fatigue, 16(3), 163 – 182. https://doi.org/10.1016/0142-1123(94)90001-9 Murakami, Y., & Nemat-Nasser, S. (1983). Growth and stability of interacting surface flaws of arbitrary shape. Engineering Fracture Mechanics, 17(3), 193 – 210. https://doi.org/10.1016/0013-7944(83)90027-9 Murakami, Y., Toriyama, T., & Coudert, E. M. (1994). Instructions for a new method of inclusion rating and correlations with the fatigue limit. Journal of Testing and Evaluation, 22(4), 318 – 326. https://doi.org/10.1520/jte11840j Nadot, Y., & Billaudeau, T. (2006). Multiaxial fatigue limit criterion for defective materials. Engineering Fracture Mechanics, 73(1), 112 – 133. https://doi.org/10.1016/j.engfracmech.2005.06.005 Smith, K. N., Topper, T. H., & Watson, P. (1970). A stress – strain function for the fatigue of metals. J Materials, 5(January 1970), 767 – 778. https://doi.org/10.1179/1752270612Y.0000000008 Vantadori, S., Ronchei, C., Scorza, D., Zanichelli, A., Araújo, L. C., & Araújo, J. A. (2022). Influence of non-metallic inclusions on the high cycle fatigue strength of steels. International Journal of Fatigue, 154. https://doi.org/10.1016/j.ijfatigue.2021.106553 Yanase, K., & Endo, M. (2014a). Multiaxial high cycle fatigue threshold with small defects and cracks. Engineering Fracture Mechanics, 123, 182 – 196. https://doi.org/10.1016/j.engfracmech.2014.03.017 Yanase, K., & Endo, M. (2014b). Prediction for multiaxial fatigue strength with small defects. MATEC Web of Conferences, 2. https://doi.org/10.1520/MPC20130013

Made with FlippingBook Ebook Creator