PSI - Issue 56
Sapam Ningthemba Singh et al. / Procedia Structural Integrity 56 (2024) 11–18 Sapam Ningthemba Singh et al./ Structural Integrity Procedia 00 (2019) 000–000
17
7
References
Aguado-Montero, Santiago, Carlos Navarro, Jesús Vázquez, Fernando Lasagni, Sebastian Slawik, and Jaime Domínguez. 2022. “Fatigue Behaviour of PBF Additive Manufactured TI6AL4V Alloy after Shot and Laser Peening.” International Journal of Fatigue 154 (January): 106536. https://doi.org/10.1016/j.ijfatigue.2021.106536. Amine, Tarak, Joseph W. Newkirk, and Frank Liou. 2014. “An Investigation of the Effect of Direct Metal Deposition Parameters on the Characteristics of the Deposited Layers.” Case Studies in Thermal Engineering 3 (July): 21–34. https://doi.org/10.1016/j.csite.2014.02.002. Arrazola, P. J., A. Garay, L. M. Iriarte, M. Armendia, S. Marya, and F. Le Maître. 2009. “Machinability of Titanium Alloys (Ti6Al4V and Ti555.3).” Journal of Materials Processing Technology 209 (5): 2223–30. https://doi.org/10.1016/j.jmatprotec.2008.06.020. Bagehorn, S., J. Wehr, and H. J. Maier. 2017. “Application of Mechanical Surface Finishing Processes for Roughness Reduction and Fatigue Improvement of Additively Manufactured Ti-6Al-4V Parts.” International Journal of Fatigue 102 (September): 135–42. https://doi.org/10.1016/j.ijfatigue.2017.05.008. Bai, Yunjian, Guo-Jian Lyu, Yun-Jiang Wang, Tianyu Chen, Kun Zhang, and Bingchen Wei. 2023. “Laser Shock Peening Strengthens Additively Manufactured High-Entropy Alloy through Novel Surface Grain Rotation.” Materials Science and Engineering: A , March, 144886. https://doi.org/10.1016/j.msea.2023.144886. Baufeld, Bernd, Omer Van der Biest, and Rosemary Gault. 2010. “Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties.” Materials and Design 31 (SUPPL. 1): S106–11. https://doi.org/10.1016/j.matdes.2009.11.032. Cao, Fei, Tiantian Zhang, Matthew A. Ryder, and Diana A. Lados. 2018. “A Review of the Fatigue Properties of Additively Manufactured Ti 6Al-4V.” JOM 70 (3): 349–57. https://doi.org/10.1007/s11837-017-2728-5. Dávila, José Luis, Paulo Inforçatti Neto, Pedro Yoshito Noritomi, Reginaldo Teixeira Coelho, and Jorge Vicente Lopes da Silva. 2020. “Hybrid Manufacturing: A Review of the Synergy between Directed Energy Deposition and Subtractive Processes.” International Journal of Advanced Manufacturing Technology . Springer. https://doi.org/10.1007/s00170-020-06062-7. Duraiselvam, Muthukannan, A. Valarmathi, S. M. Shariff, and G. Padmanabham. 2014. “Laser Surface Nitrided Ti-6Al-4V for Light Weight Automobile Disk Brake Rotor Application.” Wear 309 (1–2): 269–74. https://doi.org/10.1016/j.wear.2013.11.025. Farshidianfar, Mohammad H., Amir Khajepour, and Adrian P. Gerlich. 2016. “Effect of Real-Time Cooling Rate on Microstructure in Laser Additive Manufacturing.” Journal of Materials Processing Technology 231 (May): 468–78. https://doi.org/10.1016/j.jmatprotec.2016.01.017. Froes, F. H., H. Friedrich, J. Kiese, and D. Bergoint. 2004. “Titanium in the Family Automobile: The Cost Challenge.” JOM 56 (2): 40–44. https://doi.org/10.1007/S11837-004-0144-0/METRICS. Ghouse, Shaaz, Sarat Babu, Kenneth Nai, Paul A. Hooper, and Jonathan R.T. Jeffers. 2018. “The Influence of Laser Parameters, Scanning Strategies and Material on the Fatigue Strength of a Stochastic Porous Structure.” Additive Manufacturing 22 (August): 290–301. https://doi.org/10.1016/j.addma.2018.05.024. Günther, J., D. Krewerth, T. Lippmann, S. Leuders, T. Tröster, A. Weidner, H. Biermann, and T. Niendorf. 2017. “Fatigue Life of Additively Manufactured Ti–6Al–4V in the Very High Cycle Fatigue Regime.” International Journal of Fatigue 94 (January): 236–45. https://doi.org/10.1016/j.ijfatigue.2016.05.018. Hareharen, K, Pradeep Kumar S, T Panneerselvam, Dinesh Babu P, and N Sriraman. 2023. “Investigating the Effect of Laser Shock Peening on the Wear Behaviour of Selective Laser Melted 316L Stainless Steel.” Optics and Laser Technology 162 (September 2022): 109317. https://doi.org/10.1016/j.optlastec.2023.109317. Jiang, Qinghong, Shuai Li, Cong Zhou, Bi Zhang, and Yongkang Zhang. 2021. “Effects of Laser Shock Peening on the Ultra-High Cycle Fatigue Performance of Additively Manufactured Ti6Al4V Alloy.” Optics and Laser Technology 144 (December): 107391. https://doi.org/10.1016/j.optlastec.2021.107391. Jin, Xinyuan, Liang Lan, Shuang Gao, Bo He, and Yonghua Rong. 2020. “Effects of Laser Shock Peening on Microstructure and Fatigue Behavior of Ti–6Al–4V Alloy Fabricated via Electron Beam Melting.” Materials Science and Engineering A 780 (April): 139199. https://doi.org/10.1016/j.msea.2020.139199. Kahlin, M., H. Ansell, D. Basu, A. Kerwin, L. Newton, B. Smith, and J. J. Moverare. 2020. “Improved Fatigue Strength of Additively Manufactured Ti6Al4V by Surface Post Processing.” International Journal of Fatigue 134 (May): 105497. https://doi.org/10.1016/j.ijfatigue.2020.105497. Le, Viet Duc, Etienne Pessard, Franck Morel, and Serge Prigent. 2020. “Fatigue Behaviour of Additively Manufactured Ti-6Al-4V Alloy: The Role of Defects on Scatter and Statistical Size Effect.” International Journal of Fatigue 140 (November): 105811.
Made with FlippingBook - Online Brochure Maker