PSI - Issue 56
Balichakra Mallikarjuna et al. / Procedia Structural Integrity 56 (2024) 160–166 Author name / Structural Integrity Procedia 00 (2023) 000 – 000
166
7
mechanical behaviour of additively manufactured polyethylene terephthalate glycol composites. Journal of Thermoplastic Composite Materials , 0 (0), 1 – 21. https://doi.org/10.1177/08927057231188025 Derise, M. R., & Zulkharnain, A. (2020). Effect of infill pattern and density on tensile properties of 3D printed polylactic acid parts via fused deposition modeling (FDM). International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS , 20 (02), 54 – 63. https://doi.org/http://dx.doi.org/10.1177/0954406219856383 Gebisa, A. W., & Lemu, H. G. (2018). Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment. Materials , 11 (4), 1 – 23. https://doi.org/10.3390/ma11040500 Guessasma, S., Belhabib, S., & Nouri, H. (2019). Printability and tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling. Polymers , 11 (7). https://doi.org/10.3390/polym11071220 Heidari-Rarani, M., Ezati, N., Sadeghi, P., & Badrossamay, M. R. (2022). Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. Journal of Thermoplastic Composite Materials , 35 (12), 2435 – 2452. https://doi.org/10.1177/0892705720964560 Kadhum, A. H., & Al-zubaidi, S. (2023). Effect of the infill patterns on the mechanical and surface characteristics of 3D printing of PLA , PLA + and PETG materials. Chemengineering , 7 (3), 46. Kristiawan, R. B., Imaduddin, F., & Ariawan, D. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering , 11 (1), 639 – 649. https://doi.org/https://doi.org/10.1515/eng-2021-0063 Kumar, K. S., Soundararajan, R., Shanthosh, G., Saravanakumar, P., & Ratteesh, M. (2021). Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM. Materials Today: Proceedings , 45 , 2186 – 2191. https://doi.org/10.1016/j.matpr.2020.10.078 Kumar, M. A., Khan, M. S., & Mishra, S. B. (2020). Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics. Materials Today: Proceedings , 27 , 975 – 983. https://doi.org/10.1016/j.matpr.2020.01.291 Mallikarjuna B, J. christiyan K. G. (2013). Innovative modeling and rapid prototyping of turbocharger impeller. International Conference on Advanced Materials, Manufacturing, Management & Thermal Sciences (AMMMT-2013) , 2 (9), 1426 – 1432. Mallikarjuna, B, Pachipulusu, B., Shivashankar, H., Jayachristiyan, K. G., & Jayanth, N. (2023). A review on the melt extrusion-based fused deposition modeling ( FDM ): background , materials , process parameters and military applications. International Journal on Interactive Design and Manufacturing (IJIDeM) , 17 (2), 1 – 14. Mallikarjuna, Balichakra, & Reutzel, E. W. (2022). Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology. Manufacturing Review , 9 (27), 1 – 21. https://doi.org/10.1051/mfreview/2022024 Mohan, N., Senthil, P., Vinodh, S., & Jayanth, N. (2017). A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping ISSN: , 12 (1), 45 – 59. https://doi.org/10.1080/17452759.2016.1274490 Özen, A., Auhl, D., Völlmecke, C., Kiendl, J., & Abali, B. E. (2021). Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (FDM) 3D-printed PETG. Materials , 14 (5), 2556. Reddy, A. B., Siva, G., Reddy, M., Sudhakar, K., Manjula, B., Sinha, S., & Sadiku, E. R. (2015). Polyethylene terephthalate-based blends: Natural rubber and synthetic rubber. In Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites (pp. 75 – 98). https://doi.org/https://doi.org/10.1016/C2013-0-19172-6 Sekaran, J. J. G., Pragadish, N., Valsakumari, M., & Ravikumar, S. (2023). Characterization of fused deposition modeling components fabricated at different print orientations. Engineering Research Express , 5 (4), 025019. Srinivasan, R., Nirmal Kumar, K., Jenish Ibrahim, A., Anandu, K. V., & Gurudhevan, R. (2020). Impact of fused deposition process parameter (infill pattern) on the strength of PETG part. Materials Today: Proceedings , 27 , 1801 – 1805. https://doi.org/10.1016/j.matpr.2020.03.777 Srinivasan, R., Ruban, W., Deepanraj, A., Bhuvanesh, R., & Bhuvanesh, T. (2020). Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling. Materials Today: Proceedings , 27 (3), 1838 – 1842. https://doi.org/10.1016/j.matpr.2020.03.797 Teraiya, S., Vyavahare, S., & Kumar, S. (2021). Experimental investigation on influence of process parameters on mechanical properties of PETG parts made by fused deposition modelling. In H. K. Dave & D. Nedelcu (Eds.), Advances in Manufacturing Processes (pp. 283 – 293). Springer Singapore. Thrimurthulu, K., Pandey, P. M., & Reddy, N. V. (2004). Optimum part deposition orientation in fused deposition modeling. International Journal of Machine Tools and Manufacture , 44 (8), 585 – 594. https://doi.org/10.1016/j.ijmachtools.2003.12.004
Made with FlippingBook - Online Brochure Maker