PSI - Issue 56
Kevin Moj et al. / Procedia Structural Integrity 56 (2024) 120–130 Author name / Structural Integrity Procedia 00 (2019) 000–000
129
10
non-symmetrical topologies like the Diamond unit cell. using the minimum number of cells is essential to estimate the correct stiffness matrix. Overall. the study provides insights into the effect of the number of cells on the mechanical properties of cellular structures and proposes an algorithm for stability analysis. The findings can be useful for designing and optimizing cellular structures for various applications.
Table 4. Comparison of results from homogenization analysis.
Directional maximum Young's modulus E max (GPa)
No.
One Unit Cell
Minimum number of cells
CT Model
1 2 3 4 5 6 7 8 9
15.75 41.97 15.73 41.52
15.78 42.36 15.77 41.82
18.12 41.85 15.15 40.17 16.25 45.18 12.81 41.43 22.83 52.25 13.77 44.24 17.25 45.65 12.96 44.22
7.07
13.4 43.9
25.76
6.86
13.17 43.53 11.93 44.32 11.24 43.69 13.32 46.76 12.83 46.51
25.39 11.48
10 11 12 13 14 15 16
43.9
11.13 42.86 12.68 46.85
12.6
46.34
References Al-Ketan, Oraib, Dong Wook Lee, Reza Rowshan, and Rashid K. Abu Al-Rub. 2020. “Functionally Graded and Multi-Morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties.” Journal of the Mechanical Behavior of Biomedical Materials 102:103520. doi: 10.1016/j.jmbbm.2019.103520. Al-Ketan, Oraib, Reza Rowshan, and Rashid K. Abu Al-Rub. 2018. “Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials.” Additive Manufacturing 19:167–83. doi: 10.1016/J.ADDMA.2017.12.006. Cantaboni, F., P. Ginestra, M. Tocci, A. Colpani, A. Avanzini, A. Pola, and E. Ceretti. 2022. “Modelling and FE Simulation of 3D Printed Co-Cr Lattice Structures for Biomedical Applications.” Procedia CIRP 110(C):372–77. doi: 10.1016/J.PROCIR.2022.06.066. Chatzigeorgiou, Chrysoula, Boris Piotrowski, Yves Chemisky, Pascal Laheurte, and Fodil Meraghni. 2022. “Numerical Investigation of the Effective Mechanical Properties and Local Stress Distributions of TPMS-Based and Strut-Based Lattices for Biomedical Applications.” Journal of the Mechanical Behavior of Biomedical Materials 126:105025. doi: 10.1016/J.JMBBM.2021.105025. Doroszko, M., A. Falkowska, and A. Seweryn. 2021. “Image-Based Numerical Modeling of the Tensile Deformation Behavior and Mechanical Properties of Additive Manufactured Ti–6Al–4V Diamond Lattice Structures.” Materials Science and Engineering: A 818:141362. doi: 10.1016/J.MSEA.2021.141362. Jiang, Weimin, Wenhe Liao, Tingting Liu, Xin Shi, Cong Wang, Junfeng Qi, Yi Chen, Zhen Wang, and Changdong Zhang. 2021. “A Voxel-Based Method of Multiscale Mechanical Property Optimization for the Design of Graded TPMS Structures.” Materials & Design 204:109655. doi: 10.1016/J.MATDES.2021.109655. Karme, Aleksis, Aki Kallonen, Ville Pekka Matilainen, Heidi Piili, and Antti Salminen. 2015. “Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing.” Physics Procedia 78:347–56. doi: 10.1016/j.phpro.2015.11.049. Maconachie, Tobias, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, and Milan Brandt. 2019. “SLM Lattice Structures: Properties, Performance, Applications and Challenges.” Materials & Design 183:108137. doi: 10.1016/J.MATDES.2019.108137. Mehboob, Hassan, Faris Tarlochan, Ali Mehboob, and Seung Hwan Chang. 2018. “Finite Element Modelling and Characterization of 3D Cellular Microstructures for the Design of a Cementless Biomimetic Porous Hip Stem.” Materials & Design 149:101–12. doi:
Made with FlippingBook - Online Brochure Maker