PSI - Issue 55

56 Tahmineh Akbarinejad et al. / Procedia Structural Integrity 55 (2024) 46–56 T Akbarinejad,* , E. Machlein, C. Bertolin, O.Ogutc, G. Lobaccaro, A. T.Salaj / Structural Integrity Procedia 00 (2019) 000 – 000

11

https://doi.org/10.1088/1755-1315/588/2/022037 Rosa, F. (2020). Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints. Energies , 13 (14), Article 14. https://doi.org/10.3390/en13143628 Røstvik, H. N. (2013). Listed Church Buildings and Solar Energy. Journal of Architectural Conservation , 19 (1), 49 – 67. https://doi.org/10.1080/13556207.2013.787019 Roszczynska-Kurasinska, M., Domaradzka, A., Wnuk, A., & Oleksy, T. (2021). Intrinsic Value and Perceived Essentialism of Culture Heritage Sites as Tools for Planning Interventions. Sustainability , 13 (9), Article 9. https://doi.org/10.3390/su13095078 Sánchez-Pantoja, N., Vidal, R., & Pastor, M. C. (2021). EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact. Energies , 14 (6), Article 6. https://doi.org/10.3390/en14061627 Sandvik, P. (2006). Frå Nidarosen til Nidarneset: Ein ingegrert naturvitskapleg – arkeologisk – historisk rekonstruksjon av framveksten av Trondheim . https://www.semanticscholar.org/paper/Fr%C3%A5-Nidarosen til-Nidarneset%3A-Ein-ingegrert-%E2%80%93-%E2%80%93-av Sandvik/40acb47cdb9d54c7bea33414e42d7929ca6a1783 Sesana, E., Bertolin, C., Gagnon, A., & Hughes, J. (2019). Mitigating Climate Change in the Cultural Built Heritage Sector. Climate , 7 (7), 90. https://doi.org/10.3390/cli7070090 Shuldan, L., & Al-Akhmmadi, S. (2021). Photovoltaic Systems Integration Rules and Restrictions in the Historic Buildings Architecture. IOP Conference Series: Materials Science and Engineering , 1203 (2), 022119. https://doi.org/10.1088/1757-899X/1203/2/022119 Solar | Helios | Norway . (n.d.). Helios. Retrieved 18 February 2023, from https://fontaineromain35.wixsite.com/mysite Špaček, R., Legény, J., & Gregor, P. (2020). Challenge and response at all levels in sustainable architecture education. World Transactions on Engineering and Technology Education , 18 (1), 18 – 23. Sudimac, B., Ugrinović, A., & Jurčević, M. (2020). The Application of Photovoltaic Systems in Sacred Buildings for the Purpose of Electric Power Production: The Case Study of the Cathedral of St. Michael the Archangel in Belgrade. Sustainability , 12 (4), 1408. https://doi.org/10.3390/su12041408 Thebault, M., Clivillé, V., Berrah, L., & Desthieux, G. (2020). Multicriteria roof sorting for the integration of photovoltaic systems in urban environments. Sustainable Cities and Society , 60 , 102259. https://doi.org/10.1016/j.scs.2020.102259 Tsoumanis, G., Formiga, J., Bilo, N., Tsarchopoulos, P., Ioannidis, D., & Tzovaras, D. (2021). The Smart Evolution of Historical Cities: Integrated Innovative Solutions Supporting the Energy Transition while Respecting Cultural Heritage. Sustainability , 13 (16), 9358. https://doi.org/10.3390/su13169358 Tzetzi, I. (2019). Photovoltaic and Heritage: Towards the energy transition of the building environment . https://repository.tudelft.nl/islandora/object/uuid%3A9c539226-3ab5-4a7e-b390-b7a9a2ff767d Westerberg, U., & Glaumann, M. (1990). Design criteria for solar access and wind shelter in the outdoor environment. Energy and Buildings , 15 (3), 425 – 431. https://doi.org/10.1016/0378-7788(90)90017-D Xue, Y., Lindkvist, C. M., & Temeljotov-Salaj, A. (2021). Barriers and potential solutions to the diffusion of solar photovoltaics from the public-private-people partnership perspective – Case study of Norway. Renewable and Sustainable Energy Reviews , 137 , 110636. https://doi.org/10.1016/j.rser.2020.110636

Made with FlippingBook Digital Proposal Maker