PSI - Issue 52
Vinit Vijay Deshpande et al. / Procedia Structural Integrity 52 (2024) 391–400 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
400 10
Acknowledgements The financial support of the Darmstadt University of Applied Sciences and Hessian Ministry of Research and the Arts is gratefully acknowledged.
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M. and Kudlur, M., 2016. Tensorflow: a system for large-scale machine learning. In Osdi 16, 2016, 265-283. Arora, R., Kakkar, P., Dey, B., Chakraborty, A., 2022. Physics-informed neural networks for modeling rate-and temperature-dependent plasticity. arXiv preprint arXiv:2201.08363. Chollet, F., et. al., 2015. Keras. GitHub. Retrieved from https://github.com/fchollet/keras. Colombo, P., Hellmann, J. R., Shelleman, D. L., 2001. Mechanical properties of silicon oxycarbide ceramic foams. Journal of the American Ceramic Society 84(10), 2245-2251. Colombo, P., Modesti, M., 1999. Silicon oxycarbide ceramic foams from a preceramic polymer. Journal of the American Ceramic Society 82(3), 573-578. Deshpande, V. V., Weidenmann, K.A., Piat, R., 2021. Application of statistical functions to the numerical modelling of ceramic foam: from characterisation of CT-data via generation of the virtual microstructure to estimation of effective elastic properties. Journal of the European Ceramic Society 41 (11), 5578 – 5592. Deshpande, V. V., Piat, R., 2023. Compression failure of porous ceramics: A computational study about the effect of volume fraction on damage evolution and failure. Mechanics of Materials 177, 104533. Gibson, L.J., Ashby, M.F., 1997. Cellular Solids: Structure and Properties. Cambridge University Press, 510. Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R., 2021. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering 379, 113741. Horny, D., Schukraft, J., Weidenmann, K. A., Schulz, K., 2020. Numerical and experimental characterization of elastic properties of a novel, highly homogeneous interpenetrating metal ceramic composite. Advanced Engineering Materials 22(7), 1901556. Jiao, Y., Stillinger, F. H., Torquato, S., 2008. Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Physical Review E 77(3), 031135. Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Maia, M. A., Rocha, I. B. C. M., Kerfriden, P., van der Meer, F. P., 2023. Physically recurrent neural networks for path-dependent heterogeneous materials: Embedding constitutive models in a data-driven surrogate. Computer Methods in Applied Mechanics and Engineering 407, 115934. Meille, S., Lombardi, M., Chevalier, J., Montanaro, L., 2012. Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. Journal of the European Ceramic Society 32(15), 3959-3967. Nair, V., Hinton, G. E., 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning. ICML-10, pp. 807-814. Seeber, B. S. M., Gonzenbach, U. T., Gauckler, L. J., 2013. Mechanical properties of highly porous alumina foams. Journal of Materials Research, 28(17), 2281-2287. Schukraft, J., Lohr, C., Weidenmann, K.A., 2020. Mechanical characterization of an interpenetrating metal-matrix composite based on highly homogeneous ceramic foams. Hybrid 2020 – Materials and Structures Proceedings, 33-39. Schukraft, J., Horny, D., Schulz, K., Weidenmann, K. A., 2022. 3D modeling and experimental investigation on the damage behavior of an interpenetrating metal ceramic composite (IMCC) under compression. Materials Science and Engineering: A 844, 143147. Simulia, D.S., 2022. Abaqus Unified FEA - SIMULIATM by Dassault Syst`emes®. Accessed Apr. 24, 2022). https://www.3ds.com/products services/simulia/products/abaqus/. Van Rossum, G., Drake, F. L., 2009. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace. Vlassis, N. N., Sun, W., 2021. Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening. Computer Methods in Applied Mechanics and Engineering 377, 113695. Voigt, C., Storm, J., Abendroth, M., Aneziris, C. G., Kuna, M., Hubálková, J., 2013. The influence of the measurement parameters on the crushing strength of reticulated ceramic foams. Journal of Materials Research 28(17), 2288-2299.
Made with FlippingBook Annual report maker