PSI - Issue 52
Jiri Dvorak et al. / Procedia Structural Integrity 52 (2024) 259–266 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
266
8
Hald, J., 1999. Thermodynamic Modelling of the Microstructure of High Cr Ferritic Creep Resistant Steam Pipe Steels, in “ Modelling of Microstructural Evolution in Creep Resistant Materials ”. In: Strang, A. , McLean, M.(Eds.) , IOM Communication s Ltd., London, Chapter 1, pp. 1-14. Hald, J., 2017. High-Alloyed Martensitic Steel Grades for Boilers in Ultra- Supercritical Power Plants, in ” Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants ”. In: Di Gianfrancesco, A. (Ed. ) Woodhead Publishing Series in Energy, Woodhead Publishing – Elsevier Ltd. Amsterdam, pp. 77-96. Hasegawa, Y., 2014. Grade 92 Creep-Strength- Enhanced Ferritic Steel, in “ Coal Power Plant Materials and Life Assessment: Development and Applications”. In: Shibli, A. (Ed.) Woodhead Publishing in Energy, Woodhead Publishing- Elsevier, Ltd. Amsterdam, pp. 52- 86. Kassner M. E., Fundamentals of Creep in Metals and Alloys , 2009, Elsevier, Amsterdam The Netherlands. Khayatzadeh, S., Tanner, D.W.J., Truman, C.E., Flewitt, P.E.J., Smith, D.J. 2017. Creep Deformation and Stress Relaxation of a Martensitic P92 Steel at 650°C. Engineering Fracture Mechanics 175, 57-71. Kimura, K., Sawada, K., Kushima, H., Kubo, K., 2008. Effect of stress on the creep deformation of ASME Grade P92/T92 steels. International Journal of Materials Research 99, 395 – 401. Klueh, R.L., 2005. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. International Materials Reviews 50, 287 – 310. Kral, P., Dvorak, J., Sklenicka, V., Masuda, T., Horita, Z., Kucharova, K., Kvapilova, M., Svobodova, M., 2018. The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel. Materials 11, 787. Kral, P., Dvorak, J., Sklenicka, V., Masuda, T., Tang, Y., Horita, Y., Kuncicka, L., Kucharova, K., Kvapilova, M., Svobodova, M., 2021. Effect of Severe Plastic Deformation on Creep Behaviour and Microstructural Changes of P92 at 923K. Kovove Materialy- Metallic Materials 59, 141-148. Magnusson, H., Sandström, R., 2007. “Creep Strain Modelling of 9_12%Cr Steels Based on Microstructure Evolution”. Metallurgical and Materials Transaction A 38, 2033-2039. Maruyama, K., Harada, C., Oikawa, H., 1986. Formulation of creep curves and rupture lives for long-term creep property prediction with special reference to a 12 Cr (H46) steel. ISIJ Int. 26, 212 – 218. Maruyama, K., 2008. Fracture Mechanism Map and Fundamental Aspects of Creep Fracture, in: “ Creep-Resistant Steels ”. In: Abe, F., et al (Eds.), Woodhead, Cambridge, UK, pp. 350-364. Masumoto, H., Sakakibara, M., Sakurai, H., Fujita, T, 1986. Development of a 9%Cr-Mo-W Steel for Boiler Tubes. in: EPRI 1 st Int. Conference on Improved Coal-Fired Power Plants, Palo Alto, pp. 203-218. Mayer, K.H., Masuyama, F., 2008. The Development of Creep- Resistant Steels, in “ Creep-Resistant Steels ”. In: Abe, F., Kern, T.-U., Viswanathan, R. (Eds.) Woodhead Publishing in Materials, Woodhead Publishing Ltd., Cambridge, England, pp.15-77. Nohal, L., Mazal, P., Vlasic, F., Svobodova, M., 2019. Acoustic Emission Response to Erosion-Corrosion and Creep Damage in Pipeline Systems. Procedia Structural Integrity, 9th International Conference Materials Structure & Micromechanics of Fracture (MSMF9) 23, 227 – 232. Sakthivel, T., Selvi, S.P., Laha, K., 2015. An assessment of creep deformation and rupture behaviour of 9Cr – 1.8W – 0.5Mo – VNb (ASME grade 92) steel. Materials Science and Engineering: A 640, 61 – 71. Sakthivel, T., Selvi, S.P., Parameswaran, P., Laha,K., 2016. Creep Deformation and Rupture Behaviour of Thermal Aged P92 Steel. Materials at High Temperatures 33, 33-43. Sawada, K., Takeda, M., Maruyama, K., Ishii, R., Yamada, M., Nagae, Y., Komine, R., 1999. Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Materials Science and Engineering: A 267, 19 – 25. Seung, L.J., Armaki, H.G., Maruyama,K., Muraki, T., Ashahi, H., 2006. Causes of Breakdown of Creep Strength in 9Cr-1.8W- 0.5Mo-VNb Steel. Materials Science and Engineering A 428, 270-275. Riedel, H., 1987. Fracture at High Temperature , Springer, Berlin, Germany. Sklenicka, V., Kucharova, K., Svoboda, M., Kloc, L., Bursik, J., Kroupa, A., 2003. Long-Term Creep Behaviour of 9-12%Cr Power Plant Steels.Materials Characterization 51, 35-48. Sklenicka, V., Kloc, L.,2011. Creep in Boiler Materials: Mechanisms, Measuremen t and Modelling, in: “ Power Plant Life Management and Performance Improvement ”. In: Oakey, J.F. (Ed.). Woodhead Publishing Ltd., Oxford , Chapter 5, pp. 180 -221. Sklenička, V., Kuchařová, K., Král, P., Kvapilová, M., Svobodová, M., Čmakal, J., 2015. The ef fect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe. Materials Science and Engineering: A 644, 297 – 309. Sklenicka, V., Kucharova, K., Svobodova, M., Kral, P., Kvapilova, M., Dvorak, J., 2018. The effect of a prior short-term ageing on mechanical and creep properties of P92 steel. Materials Characterization 136, 388 – 397. Viswanathan, R., Tilley, R., 2008. Creep Damage- Industry Needs and Future Research and Development”, in : “ Creep-Resistant Steels ”. In: Abe, F. et al. (Eds.) Woodhead, Cambridge, UK, pp. 637-666.
Made with FlippingBook Annual report maker