PSI - Issue 52
Ivo Šulák et al. / Procedia Structural Integrity 52 (2024) 154–164 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
164
11
Kim, Y., Lee, D.-K., Shin, I.-H., Koo, J.-M., Seok, C.-S., 2013. Microstructural Analysis of TMF Failure Mechanism of GTD-111 Applied to Gas Turbine Blades. Procedia Engineering 55, 204 – 209. https://doi.org/10.1016/j.proeng.2013.03.243 Obrtlík, K., Petrenec, M., Man, J., Polák, J., Hrbáček, K., 2009. Isothermal fatigue behavior of cast superalloy Inconel 792 - 5A at 23 and 900 ° C. Journal of Materials Science 44, 3305 – 3314. https://doi.org/10.1007/s10853-009-3446-3 Patel, B., Kaurase, K.P., Bisen, A.M., 2015. Thermo Mechanical Fatigue Testing of GTD 111 Superalloy for Use in Gas Turbine Blades. MSF 830 – 831, 211 – 214. https://doi.org/10.4028/www.scientific.net/MSF.830-831.211 Polák, J., 1991. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, 2 ed. ed. Praha : Academia, Praha. Puspitasari, P., Andoko, A., Kurniawan, P., 2021. Failure analysis of a gas turbine blade: A review. IOP Conf. Ser.: Mater. Sci. Eng. 1034, 012156. https://doi.org/10.1088/1757-899X/1034/1/012156 Reed, R.C., 2008. The Superalloys: Fundamentals and Applications, 1 edition. ed. Cambridge University Press, Cambridge, UK; New York. Sajjadi, S., Zebarjad, S., 2006. Study of fracture mechanisms of a Ni-Base superalloy at different temperatures. Journal of Achievements in Materials and Manufacturing Engineering 18. Sajjadi, S.A., Nategh, S., 2001. A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111. Materials Science and Engineering: A 307, 158 – 164. https://doi.org/10.1016/S0921-5093(00)01822-0 Sajjadi, S.A., Nategh, S., Isac, M., Zebarjad, S.M., 2004. Tensile deformation mechanisms at different temperatures in the Ni-base superalloy GTD-111. Journal of Materials Processing Technology 155 – 156, 1900 – 1904. https://doi.org/10.1016/j.jmatprotec.2004.04.273 Sajjadi, S.A., Zebarjad, S.M., Guthrie, R.I.L., Isac, M., 2006. Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters. Journal of Materials Processing Technology 175, 376 – 381. https://doi.org/10.1016/j.jmatprotec.2005.04.021 Šmíd, M., Horník, V., Kunz, L., Hrbáček, K., Hutař, P., 2020. High Cycle Fatigue Data Transferability of MAR -M 247 Superalloy from Separately Cast Specimens to Real Gas Turbine Blade. Metals 10, 1460. https://doi.org/10.3390/met10111460 Stinville, J.C., Echlin, M.P., Callahan, P.G., Miller, V.M., Texier, D., Bridier, F., Bocher, P., Pollock, T.M., 2017. Measurement of Strain Localization Resulting from Monotonic and Cyclic Loading at 650 ∘ C in Nickel Base Superalloys. Exp Mech 1 – 21. https://doi.org/10.1007/s11340-017-0286-y Stinville, J.C., Martin, E., Karadge, M., Ismonov, S., Soare, M., Hanlon, T., Sundaram, S., Echlin, M.P., Callahan, P.G., Lenthe, W.C., Miller, V.M., Miao, J., Wessman, A.E., Finlay, R., Loghin, A., Marte, J., Pollock, T.M., 2018. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: Competing failure modes. Acta Materialia 152, 16 – 33. https://doi.org/10.1016/j.actamat.2018.03.035 Šulák, I., Obrtlík, K., 2023. The effect of dwell on thermomechanical fatigue behaviour of Ni -base superalloy Inconel 713LC. International Journal of Fatigue 166, 107238. https://doi.org/10.1016/j.ijfatigue.2022.107238 Šulák, I., Obrtlík, K., 2020. AFM, SEM AND TEM study of damage mechanisms in cyclically strained mar -M247 at room temperature and high temperatures. Theoretical and Applied Fracture Mechanics 108, 102606. https://doi.org/10.1016/j.tafmec.2020.102606 Šulák, I., Obrtlík, K., Babinský, T., Guth, S., 2022. The low cycle fatigue behaviour of MAR -M247 superalloy under different strain rates and cycle shapes at 750 °C. International Journal of Fatigue 164, 107133. https://doi.org/1 0.1016/j.ijfatigue.2022.107133 Šulák, I., Obrtlík, K., Čelko, L., 2016. High -temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247. Kovove Materialy 54, 471 – 481. https://doi.org/10.4149/km-2016-6-471 Šulák, I., Obrtlík, K., Čelko, L., Chráska, T., Jech, D., Gejdoš, P., 2018. Low cycle fatigue performance of Ni -based superalloy coated with complex thermal barrier coating. Materials Characterization 139, 347 – 354. https://doi.org/10.1016/j.matchar.2018.03.023 Šulák, I., Obrtlík, K., Hutařová, S., Juliš, M., Podrábský, T., Čelko, L., 2020. Low cycle fatigue and dwell -fatigue of diffusion coated superalloy Inconel 713LC at 800 °C. Materials Characterization 169, 110599. https://doi.org/10.1016/j.matchar.2020.110599 Šulák, I., Obrtlík, K., Škorík, V., Hrbáček, K., 2014. Effect of HIP on low cycle fatigue of MAR - M247 at 900°C. Presented at the METAL 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings, pp. 1381 – 1386. Yang, H.-Y., Kim, J.-H., Yoo, K.-B., Lee, H.-S., You, Y.-S., 2011. Low-Cycle Fatigue Life Prediction in GTD-111 Superalloy at Elevated Temperatures. Transactions of the Korean Society of Mechanical Engineers A 35, 753 – 758. https://doi.org/10.3795/KSME-A.2011.35.7.753 Yu, C., Huang, Z., Zhang, Z., Wang, J., Shen, J., Xu, Z., 2022. Effects of sandblasting and HIP on very high cycle fatigue performance of SLM fabricated IN718 superalloy. Journal of Materials Research and Technology 18, 29 – 43. https://doi.org/10.1016/j.jmrt.2022.02.077 Zhang, C., Hu, W., Wen, Z., Zhang, H., Yue, Z., 2016. Influence of hot isostatic pressing on fatigue performance of K403 nickel-based superalloy. Journal of Alloys and Compounds 655, 114 – 123. https://doi.org/10.1016/j.jallcom.2015.09.165
Made with FlippingBook Annual report maker