PSI - Issue 52
Akihide Saimoto et al. / Procedia Structural Integrity 52 (2024) 323–339 A. Saimoto et al. / Structural Integrity Procedia 00 (2023) 000–000
325
3
Fig. 1. An anisotropic infinite plate with multiple line cracks of inclination angle β k , ( k = 1 , 2 , · · · ) subjected to remote stresses.
physical coordinate system x , y is in the direction of the material principle axis x m , y m rotated clockwise by an angle α , as seen in Fig.1, the complex parameter µ mj , ( j = 1 , 2) are transformed to the o ff -axis physical coordinate system rotated by α counter-clockwise to give µ j as
µ mj cos α + sin α cos α − µ mj sin α
, ( j = 1 , 2)
(5)
µ j =
At the same time, the constitutive relation between stresses and strains in physical coordinate system becomes ε x ε y γ xy = c 11 c 12 c 16 c 12 c 22 c 26 c 16 c 26 c 66 σ x σ y τ xy or ε = C σ where c i j are the transformed compliance coe ffi cients in the physical coordinate system x , y . They are defined as follows. (6)
+ −
1 G 12
2 ν 21 E 2
1 E 2
1 E 1
cos 4 α
sin 4 α
sin 2 α cos 2 α
c 11 =
(7)
+
+
c 12 = c 16 =
1 G 12
1 E 1 2 E 1
1 E 2 −
ν 21 E 2
sin 2 α cos 2 α −
(cos 4 α
4 α )
+ sin
(8)
+
+ −
1 G 12 2 ν 21 E 2
1 G 12
2 ν 21
2(1 + ν 21 ) E 2
sin α cos 3 α
sin 3 α cos α
(9)
E 2 −
+
+
+ −
1 G 12
1 E 1
1 E 2
sin 4 α
sin 2 α cos 2 α
cos 4 α
c 22 =
(10)
+
+
1 G 12
1 G 12
c 26 = − c 66 = 4
+
2(1 + ν 21 ) E 2
2 E 1
2 ν 21
sin α cos 3 α
sin 3 α cos α
(11)
E 2 −
+
+
E 2
1 E 1
1 + 2 ν 21
1 G 12
sin 2 α cos 2 α
(cos 2 α − sin 2 α ) 2
(12)
+
+
The infinitesimal strain theory follows the definition of strain components as
∂ u ∂ y
∂ u ∂ x
∂ v ∂ y
∂ v ∂ x
(13)
ε x =
,ε y =
,γ xy =
+
where u and v are the components of displacement in x and y directions. It is known that the material parameters in the physical coordinate system µ j , ( j = 1 , 2) can be obtained by solving the following quadratic equation without using the transformation formula in Eq.(5). c 11 µ 4 − 2 c 16 µ 3 + (2 c 12 + c 66 ) µ 2 − 2 c 26 µ + c 22 = 0 (14)
Made with FlippingBook Annual report maker