PSI - Issue 52
Haolin Li et al. / Procedia Structural Integrity 52 (2024) 752–761 HaolinLi / Structural Integrity Procedia 00 (2023) 000–000
761
10
References
Zuo, Z. H., Huang, X., Yang, X., Rong, J. H., & Xie, Y. M. (2013). Comparing optimal material microstructures with optimal periodic structures. Computational Materials Science, 69, 137-147. Elsevier. Schneider, M. (2021). A review of nonlinear FFT-based computational homogenization methods. Acta Mechanica, 232(6), 2051-2100. Springer. Li, H., Khodaei, Z. S., & Aliabadi, M. H. (2023). Multiscale modelling of material degradation and failure in plain woven composites: A novel approach for reliable predictions enabled by meta-models. Composites Science and Technology, 233, 109910. Elsevier. Moulinec, H., & Suquet, P. (1998). A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157(1-2), 69-94. Elsevier. Moulinec, H., & Suquet, P. (1994). A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de l’Acade´mie des sciences. Se´rie II. Me´canique, physique, chimie, astronomie. Li, H., Bacarreza, O., Sharif Khodaei, Z. , & Aliabadi, M. H. (2022). Probabilistic multi-scale design of 2D plain woven composites considering meso-scale uncertainties. Composite Structures, 300, 116099. Elsevier. Muller, W. H. (1998). Fourier transforms and their application to the formation of textures and changes of morphology in solids. Solid Mechanics and Its Applications, 60, 61-72. Springer. Reddy, J. N. (2006). Theory and analysis of elastic plates and shells. CRC Press. Reddy, J. N. (2003). Mechanics of laminated composite plates and shells: theory and analysis. CRC Press. Dong, H., Zheng, X., Cui, J., Nie, Y., Yang, Z., & Ma, Q. (2019). Multi-scale computational method for dynamic thermo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations. Computer Methods in Applied Mechanics and Engineering, 354, 143-180. Elsevier. Helfen, C., & Diebels, S. (2013). A numerical homogenisation method for sandwich plates based on a plate theory with thickness change. ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift fu¨r Angewandte Mathematik und Mechanik, 93(2-3), 113-125. Wiley Online Li brary. Bleyer, J., & De Buhan, P. (2014). A computational homogenization approach for the yield design of periodic thin plates. Part I: Construction of the macroscopic strength criterion. International Journal of Solids and Structures, 51(13), 2448-2459. Elsevier. Mu¨ller, M., Klarmann, S., & Gruttmann, F. (2022). A new homogenization scheme for beam and plate structures without a priori requirements on boundary conditions. Computational Mechanics, 70(6), 1167-1187. Springer. Li, H., Sharif Khodaei, Z. , & Aliabadi, M. H. (2023). Fft-Based Solver for Thin Plate Models: Problem Definition, Solution, and Algorithmic Implementation. Available at SSRN: https: // ssrn.com / abstract = 4489174 or http: // dx.doi.org / 10.2139 / ssrn.4489174.
Made with FlippingBook Annual report maker