PSI - Issue 52
Haolin Li et al. / Procedia Structural Integrity 52 (2024) 752–761 HaolinLi / Structural Integrity Procedia 00 (2023) 000–000
756
5
represent the iteration numbers:
ε i + 1 ( x ) = ε i ( x ) − G 0( N ) ( x ) ∗ N i ( x ) + ε ϕ i + 1 ( x ) = ϕ i ( x ) − G 0( M ) ( x ) ∗ M i ( x ) + ϕ N i ( x )( x ) = A ( x ) : ε i ( x ) + B ( x ) : ϕ i ( x ) M i ( x ) = B ( x ) : ε i ( x ) + D ( x ) : ϕ i ( x )
(10)
And for FoPT it is presented as:
ε i + 1 ( x ) = ε i ( x ) − G 0( NN ) ( x ) ∗ N i ( x ) + ε ϕ i + 1 ( x ) = ϕ i ( x ) − G 0( MM ) ( x ) ∗ M i ( x ) −G 0( MQ ) ( x ) ∗ Q i ( x ) + ϕ γ i + 1 ( x ) = γ i ( x ) − G 0( QQ ) ( x ) ∗ Q i ( x ) −G 0( QM ) ( x ) ∗ M i ( x ) + γ
(11)
N i ( x ) = A ( x ) : ε i ( x ) + B ( x ) : ϕ i ( x ) M i ( x ) = B ( x ) : ε i ( x ) + D ( x ) : ϕ i ( x ) Q i ( x ) = S ( x ) : γ i ( x )
In what follows, an enhanced discrete algorithm for FoPT is presented, and a similar approach can be also applied to (CPT) only with the shearing contributions excluded from consideration.
Algorithm 1: Solving the cell problem in First-order plate theory Data: A ( x ) , B ( x ) , D ( x ) , S ( x ) , ε , ϕ , γ , e f begin A 0 , B 0 , D 0 , S 0 and G 0( NN ) , G 0( QQ ) , G 0( QM ) , G 0( MQ ) , G 0( MM ) ε 0 ( x ) ←− ¯ ε , ϕ 0 ( x ) ←− ¯ ϕ , γ 0 ( x ) ←− ¯ γ N 0 ( x ) ←− A ( x ) : ε 0 ( x ) + B ( x ) : ϕ 0 ( x ), M 0 ( x ) ←− D ( x ) : ϕ 0 ( x ) + B ( x ) : ε 0 ( x ), Q 0 ( x ) ←− S ( x ) : γ 0 ( x ) e c ←− + ∞ while e c > e f do Iteration: i ←− i + 1 Fourier Transformation of the stress and moment resultants: N i ( ξ ) = FFT N i ( x ) , M i ( ξ ) = FFT M i ( x ) , Q i ( ξ ) = FFT Q i ( x ) Calculate the residual: e c = Res N i ( ξ ) , M i ( ξ ) , Q i ( ξ ) Calculate the new strain and curvature distribution: ε i + 1 ( ξ ) = ε i ( ξ ) − G 0( NN ) ( ξ ) : N i ( ξ ), and ε i + 1 ( 0 ) = ε ϕ i + 1 ( ξ ) = ϕ i ( ξ ) − G 0( MM ) ( ξ ) : M i ( ξ ) − G 0( MQ ) ( ξ ) : Q i ( ξ ), and ϕ i + 1 ( 0 ) = ϕ γ i + 1 ( ξ ) = γ i ( ξ ) − G 0( QQ ) : Q i ( ξ ) − G 0( QM ) ( ξ ) : M i ( ξ ), and γ i + 1 ( 0 ) = ¯ γ Inverse Fourier Transformation of the strain and curvature vectors: ε i + 1 ( x ) = JFFT ε i + 1 ( ξ ) , ϕ i + 1 ( x ) = JFFT ϕ i + 1 ( ξ ) , γ i + 1 ( x ) = JFFT γ i + 1 ( ξ ) Calculate the new stress and moment resultants:
N i + 1 ( x ) = A ( x ) : ε i + 1 ( x ) + B ( x ) : ϕ i + 1 ( x ) M i + 1 ( x ) = D ( x ) : ϕ i + 1 ( x ) + B ( x ) : ε i + 1 ( x ) Q i + 1 ( x ) = S ( x ) : γ i + 1 ( x ) Result: ε f ( x ), ϕ f ( x ), γ f ( x ), N f ( x ), M f ( x ), Q f ( x )
Made with FlippingBook Annual report maker