PSI - Issue 52

Marie Kvapilova et al. / Procedia Structural Integrity 52 (2024) 89–98 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

98 10

Wang, X., Zhou, Y., Zhao, Y., Zhang, Z., 2015. Effects of Solutioning on the Dissolution and Coarsening of γ´Preci pitates in a Nickel-Based Superalloy. Journal of Materials Engineering and Performance 24, 1492-1504. Keyvanlou, H., Gilakjani, R.S., Nezakat, M., 2020. On the Effect of Long Service exposure: Changes in Microstructure and Mechanical Properties of Ni-Based Superaslloy. Metallurgical Research & Technology 117, 625. Daleo, J.A., Wilson, J.R.,1998. GTD 111 alloy material study. Journal of Engineering for Gas Turbines and Power 120, 375-382. Sajjadi, S.A., Nategh, S., 2001. A High Temperature Deformation Mechanism Map for the High Performance Ni-base superalloy GTD 111. Materials Science and Engineering A307, 158-164. Sajjadi, S.A., Nategh, S., Guthrie, R.I.L., 2002. Study of Microstructure and Mechanical Properties of High Performance Ni-Base Superalloy GTD-111. Materials Science and Engineering A325, 484-489.Nategh, S., Sajjadi, S.A., 2003. Dislocation Network Formation during Creep in Ni-Base Superalloy GTD-111.Materials Science and Engineering A339, 103-108. Sajjadi, S.A., Nategh, S., Isac, M., 2003. High Temperature Tensile Behaviour of the Ni-Base superalloy GTD-111. Canadian Metallurgical Quartely 42, 489-494. Ibanez, A.R., Saxena, A., Kang, J.D., 2006. Creep Behavior of a Directionally Solidified Nickel Based Superalloy. Strength, Fracture and Complexity 4, 75-81. Shigeyama, H., Okada, M., Takahashi, T., Yamada, S., Sakai, T., Fujioka, T., 2017. Morphological Changes in γ´ Phase by Creep, Aging and Aging After Creep for Polycrystalline Nickerl- Based Superalloy. Proceeding Series: Turbo Expo:Power for Land, Sea, and Air. ASME Digital Collection, Paper No. GT2017-64104, 10 pages. Asadi, J., Sajjadi, S.A., Omidvar, H., 2020. Creep Properties of Ni-Based Superalloy GTD-111 Joints Produced by Transient Liquid Phase Method Using BNi-3 Filler.Journal of Manufacturing Processes 58, 1103-1114. Kim, M.T., Kim, D.S., Oh, O.Y.,2008. Effect of γ´Precipitation during Hot Isostatic Pressing on the Mechanical Property of a Nickel-Based Superalloy. Materials Science and Engineering A 480, 218-225. Sklenicka, V., Kvapilova, M., Kral, P., Dvorak, J., Svoboda, M., Podhorna, B., Zyka, J., Hrbacek, K., Joch, A., 2018. Degradation Processes in High-Temperature Creep of Cast Cobalt-Based Superalloys. Materials Characterization 114, 479-489. Kvapilova, M., Kral, P., Dvorak, J., Sklenicka, V., 2020. High Temperature Creep Behaviour of Cast Nickel-Based Superalloys INC 713LC, B1914 and MAR-M247. Metals 11, No. 152. ASTM International, Designation: E139-11(2009).Standard Test for Conducting Creep, Creep- Rupture, and Stress-Rupture Tests of Metallic Materials, in: Annual Book of ASTM Standards, 2009,pp. 312-325,03.01. Long, F., Yoo, Y.S., Jo, C.Y., Seo, S.M., Jeong, H.W., Song, Y.S., Jin, T., Hu, Z.Q., 2009. Phase Transformation of η and σ Phases in a n Experimental Nickel-Based Alloy. Journal of Alloys and Compounds 478, 181-187. Qin, X.Z., Guo, J.T., Yuan, C., Chen, C.L., Hou, J.S., Ye, H.Q., 2008. Decomposition of Primary MC Carbide and Its Effects on the Fracture Behaviors of a Cast Ni-Base Superalloy. Materials Science and Engineering 483, 74-79. Čadek, J,. 1988. Creep in Metallic Materials. Elsevier, Amsterdam, The Nether land. Kassner, M.E., 2009. Fundamentals of Creep in Metals and Alloys. Elsevier, Amsterdam, The Netherlands. Mukherjee, A.K., Bird, J.E., Dorn,J. 1968. The Interaction Between Dislocations and Point Defects, Vol. II, Part III, ed. B.L. Eyre. Atomic Energy Authority, Harwell, UK, pp. 422-495. Cui, L., Su, H., Yu,J., Liu, J., Sun, X. 2017. The Creep Deformation and Fracture Behaviors of Nickel-Base Superalloy M951G at 900°C. Materials Science and Engineering A 707 (2017) 383-391. Norton, E.H. 1929. Creep of Steel at High Temperatures.McGraw Hill, New York, USA. Maruyama, K,. 2008. Fracture Mechanism Map and Fundamental Aspects of Creep Fracture. in: Creep- Resistant Steels, eds. F. Abe, T.-U- Kern and R. Viswanathan. Woodhead Publishing in Materials, Cambridge, England. Chapter 12, pp. 350- 364. Reed, R.C. 2006. The Superalloys:Fundamentals and Applications.Cambridge Press, Cambridge, UK. Guguloth, K., Chandru F.D., Paulose, n., Sahu, J.K. 2021. Evolution of Microstructure During Tensile Creep Deformation of Nickel- Based Disc Superalloy. International Journal of Pressure Vessels and Piping 194, 104539. Sourabh, K., Singh, J.B. 2022. Creep behaviour of Alloy 690 in the temperature range 800-1000°C. Journal of Materials Research and Technology 17, pp.1553-1569. Hayes, R.W., Azzarto, F., Klopfer, E.A., Crimp, M.A. 2017. Characterization of Creep Deformation of Ni-Cr Solid Solution Alloy Nimonic 75. Materials Science and Engineering A 690, 453-462. Monkman, F.C., Grant,N.J.1956. An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep Rupture Tests. Proc. ASTM 56, 593-620. Nategh, S., Sajjadi, S.A. 2003. Dislocation Network Formation During Creep in Ni-Base Superalloy GTD-111. Materials Science and Engineering A 339, 103-108. Sklenicka, V. 1997. High Temperature Intergranular Damage and Fracture. Materials Science and Engineering A 234-236, 30-36. Beere,W. 1981. Theoretical Treatment of Creep Cavity Growth and Nucleation. In: Cavities and Cracks in Creep and Fatigue, ed. J. Gittus. Applied Science Publishers, London and New Jersey,Chapter 1, pp. 1-28. Riedel, H. 1987. Fracture at High Temperatures.Springer-Verlag,Berlin. Svoboda, J., Turek, I., Sklenicka, V. 1990. Unified Thermodynamic Treatment of Cavity Nucleation and Growth in High-Temperature Creep. Acta Metallurgica et Materialia 38, 573-580.

Made with FlippingBook Annual report maker