PSI - Issue 52
Roman Vodička et al. / Procedia Structural Integrity 52 (2024) 242 – 251 R. Vodicˇka / Structural Integrity Procedia 00 (2023) 000–000
251
10
Acknowledgements
The author acknowledges support by the grants VEGA 1 / 0363 / 21 and VEGA 1 / 0307 / 23.
References
Alberty, J., Carstensen, C., Funken, S., Klose, R., 2002. Matlab implementation of the finite element method in elasticity. Computing 69, 239–263. Ambrosio, L., Tortorelli, V.M., 1990. Approximation of functional depending on jumps by elliptic functional via Γ -convergence. Communications on Pure and Applied Mathematics 43, 999–1036. Bedford, A., 1985. Hamilton’s Principle in ContinuumMechanics. Pitman, Boston. Benzeggagh, M., Kenane, M., 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass / epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449. Borden, M., Verhoosel, C., Scott, M., Hughes, T., Landis, C., 2012. A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95. Bourdin, B., Francfort, G.A., Marigo, J.J., 2008. The variational approach to fracture. J. Elasticity 91, 5–148. Dosta´l, Z., 2009. Optimal Quadratic Programming Algorithms. volume 23 of Springer Optimization and Its Applications . Springer, Berlin. Feng, Y., Li, J., 2022. Phase-field cohesive fracture theory: A unified framework for dissipative systems based on variational inequality of virtual works. J. Mech. Phys. Solids 159, 104737. Francfort, G.A., Marigo, J.J., 1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342. Kruzˇ´ık, M., Roub´ıcˇek, T., 2019. Mathematical Methods in Continuum Mechanics of Solids. Interaction of Mech. and Math. Series, Springer, Switzerland. Li, Y., Yu, T., Natarajan, S., Bui, T.Q., 2023. A dynamic description of material brittle failure using a hybrid phase-field model enhanced by adaptive isogeometric analysis. European Journal of Mechanics - A / Solids 97, 104783. Miehe, C., Hofacker, M., Welschinger, F., 2010. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Method. Appl. M. 199, 2765–2778. Roub´ıcˇek, T., 2020. Coupled time discretization of dynamic damage models at small strains. IMA Journal of Numerical Analysis 40, 1772–1791. Roub´ıcˇek, T., Panagiotopoulos, C.G., 2017. Energy-conserving time discretization of abstract dynamic problems with applications in continuum mechanics of solids. Numerical Functional Analysis and Optimization 38, 1143–1172. Sargado, J.M., Keilegavlen, E., Berre, I., Nordbotten, J.M., 2018. High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J. Mech. Phys. Solids 111, 458–489. Tanne´, E., Li, T., Bourdin, B., Marigo, J.J., Maurini, C., 2018. Crack nucleation in variational phase-field models of brittle fracture. J. Mech. Phys. Solids 110, 80–99. Vodicˇka, R., 2022. A quasi-static computational model for interface and phase-field fracture in domains with inclusions. Procedia Structural Integrity 42, 927–934. 23 European Conference on Fracture. Vodicˇka, R., 2023. A mixed-mode dependent interface and phase-field damage model for domains with inclusions. Theor. Appl. Frac. Mech. -. (submitted). Wang, Q., Feng, Y., Zhou, W., Cheng, Y., Ma, G., 2020. A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Computer Methods in Applied Mechanics and Engineering 370, 113270. Wu, J.Y., 2017. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids 103, 72–99. Zhang, P., Yao, W., Hu, X., Bui, T., 21. An explicit phase field model for progressive tensile failure of composites. Eng. Fract. Mech. 241, 107371. Zhang, X., Sloan, S., Vignes, C., Sheng, D., 2017. A modification of the phase-field model for mixed mode crack propagation in rock-like materials 322, 123–136.
Made with FlippingBook Annual report maker