PSI - Issue 52

Tomislav Polančec et al. / Procedia Structural Integrity 52 (2024) 348 – 355 Tomislav Polančec, Tomislav Lesičar, Jakov Rako / Structural Integrity Procedia 00 (2019) 000 – 000

355

8

[5]

Hoganas AB (publ.). Hipaloy® product brochures, 2011.

[6] Gerosa R, Rivolta B, Tavasci A, Silva G, Bergmark A. Crack initiation and propagation in Chromium pre-alloyed PM-steel under cyclic loading. Eng Fract Mech 2008;75:750 – 9. https://doi.org/10.1016/J.ENGFRACMECH.2007.01.009. [7] Kabatova M, Dudrova E, Wronski AS. Microcrack nucleation, growth, coalescence and propagation in the fatigue failure of a powder metallurgy steel. Fatigue Fract Eng Mater Struct 2009;32:214 – 22. https://doi.org/10.1111/j.1460-2695.2009.01328.x. [8] Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 1962;7:55 – 129. [9] Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids 1960;8:100 – 4. [10] Dolbow J, Moes N, Belytschko T. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design 2000;36:235 – 60. [11] Moes N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets - Part I: Mechanical model, International Journal for Numerical Methods in Engineering. Int J Numer Methods Eng 2002;53:2549 – 68. [12] Griffith AA, Taylor GI. VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character 1921;221:163 – 98. https://doi.org/10.1098/rsta.1921.0006. [13] Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 1998;46:1319 – 42. https://doi.org/10.1016/S0022-5096(98)00034-9. [14] Bourdin B, Francfort GA, Marigo J-J. Numerical experiments in revisited brittle fracture. J Mech Phys Solids 2000;48:797 – 826. [15] Heister T, Wheeler MF, Wick T. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 2015;290:466 – 95. https://doi.org/10.1016/J.CMA.2015.03.009. [16] Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 2010;199:2765 – 78. https://doi.org/10.1016/J.CMA.2010.04.011. [17] Seleš K, Lesičar T, Tonković Z, Sorić J. A residual control staggered solution scheme for the phase -field modeling of brittle fracture. Eng Fract Mech 2019;205:370 – 86. https://doi.org/https://doi.org/10.1016/j.engfracmech.2018.09.027. [18] Gerasimov T, De Lorenzis L. A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 2016;312:276 – 303. https://doi.org/10.1016/J.CMA.2015.12.017. [19] De Lorenzis L, Gerasimov T. Numerical Implementation of Phase-Field Models of Brittle Fracture BT. In: De Lorenzis L, Düster A, editors. Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. CISM International Centre for Mechanical Sciences, vol. 599, Cham: Springer International Publishing; 2020, p. 75 – 101. https://doi.org/10.1007/978-3-030-37518-8_3. [20] Ambati M, Gerasimov T, De Lorenzis L. Phase-field modeling of ductile fracture. Comput Mech 2015;55:1017 – 40. https://doi.org/10.1007/s00466-015-1151-4. [21] Seiler M, Linse T, Hantschke P, Kästner M. An efficient phase-field model for fatigue fracture in ductile materials. Eng Fract Mech 2020;224:106807. https://doi.org/10.1016/J.ENGFRACMECH.2019.106807. [22] Sel eš K, Aldakheel F, Tonković Z, Sorić J, Wriggers P. A general phase -field model for fatigue failure in brittle and ductile solids. Comput Mech 2021;67:1431 – 52. https://doi.org/10.1007/s00466-021-01996-5. [23] Bourdin B, Francfort GA, Marigo J-J. The Variational Approach to Fracture. J Elast 2008;91:5 – 148. https://doi.org/10.1007/s10659- 007-9107-3. [24] Duda FP, Ciarbonetti ÁA, Sánchez PJ, Huespe AE. A phase-field/gradient damage model for brittle fracture in elastic – plastic solids. Int J Plast 2015;65:269 – 96. [25] Lesičar T, Polančec T, Tonković Z. Convergence -Check Phase Field Scheme for Modelling of Brittle and Ductile Fracture. Submitted to Applied Sciences 2023. [26] Kuhn C, Schlüter A, Müller R. On degradation functions in phase field fracture models. Comput Mater Sci 2015;108:374 – 84. https://doi.org/10.1016/J.COMMATSCI.2015.05.034. [27] Amor H, Marigo JJ, Maurini C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J Mech Phys Solids 2009;57:1209 – 29. https://doi.org/10.1016/J.JMPS.2009.04.011. [28] Miehe C, Schaenzel L-M, Ulmer H. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Methods Appl Mech Eng 2015;294:449 – 85. [29] Abaqus/Standard 6.14, Providence, RI, USA: Dassault Systemes Simulia Corp.; 2014. [30] Tomić Z, Gubeljak N, Jarak T, Polančec T, Tonković Z. Micro - and macromechanical properties of sintered steel with different porosity. Scr Mater 2022;217:114787. https://doi.org/https://doi.org/10.1016/j.scriptamat.2022.114787. [31] Tomić Z, Gubeljak N, Jarak T, Polančec T, Tonković Z. Micro - and macromechanical properties of sintered steel with different porosity. Scr Mater 2022;217:114787. https://doi.org/https://doi.org/10.1016/j.scriptamat.2022.114787.

Made with FlippingBook Annual report maker