PSI - Issue 5

Baris Arslan et al. / Procedia Structural Integrity 5 (2017) 171–178 Baris Arslan et al. / Structural Integrity Procedia 00 (2017) 000 – 000

178

8

NDE, Smart Struct. Devices, Syst. December 16, 2002 - December 18, 2002. 4935 (2002) 484 – 494. doi:10.1117/12.479821. [9] S.W. Shin, T.K. Oh, Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches, Constr. Build. Mater. 23 (2009) 1185 – 1188. doi:10.1016/j.conbuildmat.2008.02.017. [10] R. Tawie, H.K. Lee, Monitoring the strength development in concrete by EMI sensing technique, Constr. Build. Mater. 24 (2010) 1746 – 1753. doi:10.1016/j.conbuildmat.2010.02.014. [11] D. Xu, S. Huang, X. Cheng, Electromechanical impedance spectra investigation of impedance-based PZT and cement/polymer based piezoelectric composite sensors, Constr. Build. Mater. 65 (2014) 543 – 550. doi:10.1016/j.conbuildmat.2014.05.035. [12] D. Wang, H. Song, H. Zhu, Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer, Smart Mater. Struct. 23 (2014) 115019. doi:10.1088/0964-1726/23/11/115019. [13] D. Wang, J. Zhang, H. Zhu, Embedded electromechanical impedance and strain sensors for health monitoring of a concrete bridge, Shock Vib. 2015 (2015). doi:10.1155/2015/821395. [14] P. Liu, W. Wang, Y. Chen, X. Feng, L. Miao, Concrete damage diagnosis using electromechanical impedance technique, Constr. Build. Mater. 136 (2017) 450 – 455. doi:10.1016/j.conbuildmat.2016.12.173. [15] R.N.F. Silva, K.M. Tsuruta, D.D.S. Rabelo, R.M. Finzi Neto, V. Steffen-Jr, The use of electromechanical impedance based structural health monitoring technique in concrete structure, (2016) 5 – 8. [16] O. Sengul, C. Sengul, G. Keskin, Y. Akkaya, C. Tasdemir, M.A. Tasdemir, Fracture and Microstructural Studies on Normal and High Strength Concretes with Different Types of Aggregates, in: VIII Int. Conf. Fract. Mech. Concr. Concr. Struct., 2013. http://framcos.org/FraMCoS-8/p468.pdf (accessed November 27, 2014). [17] Q. Li, Z. Deng, H. Fu, Effect of Aggregate Type on Mechanical Behavior of Dam Concrete, ACI J. Nov-Dec (2004) 483 – 492. doi:10.6088/ijcser.00202030008. [18] V.E. Saouma, J.J. Broz, E. Brühwiler, H.E. Boggs, Effect of aggregate and specimen size on fracture properties of dam concrete, J. Mater. Civ. Eng. 3 (1991) 204 – 218. http://ascelibrary.org/doi/abs/10.1061/(ASCE)0899-1561(1991)3:3(204) (accessed November 27, 2014). [19] M. Elices, C.G. Rocco, Effect of aggregate size on the fracture and mechanical properties of a simple concrete, Eng. Fract. Mech. 75 (2008) 3839 – 3851. doi:10.1016/j.engfracmech.2008.02.011. [20] I.M. Nikbin, M.H.A. Beygi, M.T. Kazemi, J. Vaseghi Amiri, E. Rahmani, S. Rabbanifar, et al., Effect of coarse aggregate volume on fracture behavior of self compacting concrete, Constr. Build. Mater. 52 (2014) 137 – 145. doi:10.1016/j.conbuildmat.2013.11.041. [21] B. Chen, J. Liu, Effect of aggregate on the fracture behavior of high strength concrete, Constr. Build. Mater. 18 (2004) 585 – 590. doi:10.1016/j.conbuildmat.2004.04.013. [22] R. Kozul, D. Darwin, Effects of aggregate type, size, and content on concrete strength and fracture energy, (1997). http://www.iri.ku.edu/publications/sm43.pdf (accessed November 27, 2014). [23] K.K. Tseng, L. Wang, Smart piezoelectric transducers for in situ health monitoring of concrete, Smart Mater. Struct. 13 (2004) 1017 – 1024. doi:10.1088/0964-1726/13/5/006. [24] eFunda, Lead Zirconate Titanate (PZT-5H), (2017). http://www.efunda.com/materials/piezo/material_data/matdata_output.cfm?Material_ID=PZT-5H. [25] J.-I. Sim, K.-H. Yang, J.-K. Jeon, Influence of aggregate size on the compressive size effect according to different concrete types, Constr. Build. Mater. 44 (2013) 716 – 725. doi:10.1016/j.conbuildmat.2013.03.066. [26] K. Miled, O. Limam, K. Sab, A probabilistic mechanical model for p rediction of aggregates’ size distribution effect on concrete compressive strength, Phys. A Stat. Mech. Its Appl. 391 (2012) 3366 – 3378. doi:10.1016/j.physa.2012.01.051. [27] I.M. Nikbin, M.H. a. Beygi, M.T. Kazemi, J. Vaseghi Amiri, E. Rahmani, S. Rabbanifar, et al., A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete, Mater. Des. 59 (2014) 199 – 210. doi:10.1016/j.matdes.2014.02.054. [28] B. Chen, J. Liu, Investigation of effects of aggregate size on the fracture behavior of high performance concrete by acoustic emission, Constr. Build. Mater. 21 (2007) 1696 – 1701. doi:10.1016/j.conbuildmat.2006.05.030. [29] F. Amparano, Y. Xi, Y. Roh, Experimental study on the effect of aggregate content on fracture behavior of concrete, Eng. Fract. Mech. 67 (2000). http://www.sciencedirect.com/science/article/pii/S0013794400000369 (accessed November 27, 2014). [30] S. Cho, C. Yang, R. Huang, Effect of aggregate volume fraction on the elastic moduli and void ratio of cement-based materials, J. Mar. Sci. …. 8 (2000) 1– 7. http://jmst.ntou.edu.tw/marine/8-1/1-7.pdf (accessed November 27, 2014). [31] Abaqus 2016 Analysis User’s Guide, 6.7.2 Piezoelectric Analysis, in: Abaqus PDF Doc., 2016.

Made with FlippingBook - Online catalogs