PSI - Issue 5
B. Boukert et al. / Procedia Structural Integrity 5 (2017) 115–122 B.Boukert / Structural Integrity Procedia 00 (2017) 000 – 000
3
117
2. Model description
2.1. Displacement Field A third order plate theory developed by Reddy [1][7] is used in this paper through a cubic function of the thickness coordinate, where ( u o , v o , w o ) are the displacement components along the ( x, y, z ) directions, respectively, of a point on the midplane (i.e., z=0 ). ø x and ø y denote rotations about the y and x axes [1-5][11].
w
4
3
0
( , , ) u x y z u z x y ( , )
z
(
)
x
x
0
2
x
4 h
3
w
3
0
( , , ) v x y z v z x y ( , )
z
(
)
(1)
y
y
0
2
y
h
3
( , , ) w x y z w x y ( , )
0
The strain is given by equation (2)
0 1 3 0 1 3 3 0 1 3 xx xx xx xx yy yy yy yy xy z z
0 2 2 0 2 yz yz yz xz xz xz z
(2)
,
xy
xy
xy
Where ε 0 ,ε 1 ,ε 3 ,γ 0 ,γ 2 are given by
2
2
w
x y y
u
0 w x w
1 . 2 1 .
x
0
0
2
x x
x
x
1 1 1 xx yy xy
3 3 3 xx yy xy
0 0 0 xx yy v x
y
2
2
w
4 h
0
,
,
0
,
y
2
2
y
3
0 0 y u v w w y x x y 0 0 0 2 . xy
y
x
2
y
w
x
x y
0
2.
y x
x y
0 y w
0 y w
0 0 yz xz
2 yz
4
y
y
(3)
,
2
w
w
h
2
xz
0
0
x
x
x
x
2.2. Equation of motion
The equation of motion of the third order theory are derived using the principle virtual displacement, the obtained set of equations are presented below.
Made with FlippingBook - Online catalogs