PSI - Issue 5

Marcin Wachowski et al. / Procedia Structural Integrity 5 (2017) 422–429 Author name / Structural Integrity Procedia 00 (2017) 000 – 000

429

8

4. Summary

In the study high cycle fatigue element model of laminate AA2519/AA1050/Ti6Al4V produced by explosive bonding was analyzed. Research results the impact of the applied heat treatment on the laminate. The results indicate the beneficial effect of the applied heat treatment. It showed an increase of the heat treated samples, both notched and smooth samples. For samples with a hole increase in fatigue life were observed only in the tests above  max =150 MPa. The highest, 30 % increase in the durability of these samples occurred during testing at  max =250 MPa. The analysis of smooth heat-treated samples showed an increase in stability after the heat treatment of 20-30 % of the range  max =175-350 MPa. The results of electron microscopy studies of surface fatigue fracture allowed to determine the location of sources of fatigue cracking, which in the case of samples without heat treatment were in the area of border merger Ti6Al4V-AA1050. Sources of cracking in the elements after the heat treatment were located within the edge of the samples. The project is carried out under Project PBS2/A5/35/2013 funded by the National Research and Development Centre. References [1] Bataev I.A.,. Bataev A.A, Mali V.I., Pavliukova D.V., Structural and mechanical properties of metallic – intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225 – 234. [2] Rohatgi A., J H.D., S V.K., Harvey K.P., Resistance-curve and fracture behavior of Ti – Al3Ti metallic – intermetallic laminate (MIL) composites, Acta Mater. 51 (2003) 2933 – 2957. [3] Shu-ying J., Shi-chun L., Lei Z., Microstructure evolution of Al – Ti liquid – solid inter-face, Trans. Nonferrous Metals Soc. China 23 (2013) 3545 – 3552. [4] Price R.D., Jiang F., Kulin R.M., Vecchio K.S., Effects of ductile phase volume fraction on the mechanical properties of Ti – Al3Ti metal – intermetallic laminate (MIL) composites, Mater. Sci. Eng. A 528 (2011) 3134 – 3146. [5] Li T., Jiang F., Olevsky E.A., Vecchio K.S., Meyers M.A., Damage evolution in Ti6Al4V – Al3Ti metal – intermetallic laminate composites, Mater. Sci. Eng. A 443 (2007) 1 – 15. [6]. Peng L.M, Wang J.H., Li H., Zhao J.H., He L.H., Synthesis and microstructural characterization of Ti – Al3Ti metal – intermetallic laminate (MIL) composites, Scr. Mater. 52 (2005) 243 – 248. [7] Peng L.M., Li H., Wang J.H., Processing and mechanical behavior of laminated titanium – titanium tri-aluminide (Ti – Al3Ti) composites, Mater. Sci. Eng. A 406 (2005) 309 – 318. [8] Romankov S.E., Mukashev B.N., Ermakov E.L., Muhamedshina D.N., Structural formation of aluminide phases on titanium substrate, Surf. Coat. Technol. 180 – 181 (2004) 280 – 285. [9] Perusko D., Petrovic S., Stojanovic M., Mitric M., Cizmovic M., Panjan M., Milosavljevic M., Formation of intermetallics by ion implantation of multilatered Al/Ti nano-structures, Nucl. Inst. Methods Phys. Res. B 282 (2012) 4 – 7. [10] Goda D.J., Richards N.L., Caley W.F., Chaturvedi M.C., The effect of processing variables on the structure and chemistry of Ti – aluminide based LMCS, Mater. Sci. Eng. A334 (2002) 280 – 290. [11] Xu L., Cui Y.Y., Hao Y.L., Yang R., Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A 435 – 436 (2006) 638 – 647. [12] Milosavljevi M., Stojanovi N., Perusko D., Timotijevi B., Topreka D., Kova J., Dra G., Jeynes C., Ion irradiation induced Al – Ti interaction in nano-scaled Al/Ti multilayers, Appl. Surf. Sci. 258 (2012) 2043 – 2046. [13] Ma M., Huo P.,.C L.W., G.J W.., D.M. W., Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding, Mater. Sci. Eng. A 636 (2015) 301 – 310. [14] Appel F., Oehring M., R. Wagner, Novel design concepts for gamma-base titanium aluminide alloys, Intermetallics 8 (2000) 1283 – 1312. [15] Lindemann J.,. Wagner L, Mean stress sensitivity in fatigue of α, (αβ) and β titanium alloys, Mater. Sci. Eng. A 234 – 236 (1997) 1118 – 1121. [16] Bonarski J., Smolik J.,. Tarkowski L, Biel M., Depth-profile of residual stresses in metallic/ceramic coatings, Arch. Metall. Mater. 53 (2008) 49 – [17] Szachogluchowicz I., Sniezek L., Sulym H., Gloc M., Testing and verification modeling of wave-shape formation under explosion welding to laminate AA 2519-Ti6Al4V, Procedia Structural Integrity, Volume 2, 2016, Pages 2375-2380 [18] Szachogluchowicz I., Sniezek L., Hutsaylyuk V. Low Cycle Fatigue Properties Laminate AA2519-TI6AL4V, Procedia Engineering, Volume 114, 2015, Pages 26-33 [19] Szachogluchowicz I., Sniezek L., Hutsaylyuk V. Low cycle fatigue properties of AA2519 – Ti6Al4V laminate bonded by explosion welding, ngineering Failure Analysis, In Press, Corrected Proof, Available online 7 January 2016 Acknowledgements.

Made with FlippingBook - Online catalogs