PSI - Issue 5
Pavol Hvizdoš et al. / Procedia Structural Integrity 5 (2017) 1385–1392 Pavol Hvizdoš et al. / Structural Integrity Procedia 00 (2017) 000 – 000
5
1389
1,0
1,0
200 °C
200 °C
0,9
0,9
0,8
0,8
0,7
0,7
0,6
0,6
0,5
0,5
0,4
0,4
0,3
0,3
Friction cofficient [-]
0,2 Friction coefficient [-]
0 wt.% C 1,8 wt.% C 2,2 wt.% C
0 wt.% C 1,8 wt.% C 2,2 wt.% C
0,2
0,1
0,1
WC-Co ball
Steel (100Cr6) ball
0 25 50 75 100 125 150 175 200 225 250 275 300 0,0
0 25 50 75 100 125 150 175 200 225 250 275 300 0,0
Sliding distance [m]
Sliding distance [m]
Fig. 3 a) Friction coefficients at 200 °C with WC-Co ball. b) Friction coefficients at 200 °C with steel (100Cr6) ball
The wear tracks of the reference and composite materials samples worn at the experimental temperatures are shown in Figs. 4 – 6, respectively. Room temperature wear tests show the lowest values of wear rates, around 5.10 -8 mm 3 /N.m for steel ball and around 5.10 -7 mm 3 /N.m for WC-Co mm 3 /N.m ball. Main damage mechanisms at room temperature was abrasion, occasionally microcracking also took place. Surface oxidation does not seem to be important, Fig. 7.
a)
b)
c)
20 µm
Fig. 4 Wear tracks of all materials at room temperature against WC-Co ball - abrasion. a) 0% C, b) 1.8 % C, c) 2.2 % C.
a)
b)
c)
20 µm
Fig. 5 Wear tracks of all materials at 200 °C against steel ball - abrasion, microcracking and debris production, beginning of formation of oxidic tribofilm. a) 0% C, b) 1.8 % C, c) 2.2 % C.
Made with FlippingBook - Online catalogs