PSI - Issue 45
Oscar Zi Shao Ong et al. / Procedia Structural Integrity 45 (2023) 140–147 O.Z.S. Ong et al. / Structural Integrity Procedia 00 (2019) 000 – 000
147
8
Mass imperfections in the CNT reinforced plates decrease the natural frequency of the system. FG-X CNT reinforced plate has the highest natural frequency, followed by UD, and FG-O having the lowest natural frequency. CNT reinforced plates showed higher sensitivity to changes in plate dimensions compared to non-reinforced plates, but lower sensitivity to mass imperfections especially for cases of higher CNT volume fractions. References Chae, H. G., Y. H. Choi, M. L. Minus, S. Kumar, 2009. Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Composites Science and Technology 69(3-4): 406-413. Chae, H. G., M. L. Minus, A. Rasheed, S. Kumar, 2007. Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer 48(13): 3781-3789. Daikh, A. A., M. S. A. Houari, M. O. Belarbi, S. Chakraverty, M. A. Eltaher, 2022. Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Engineering with Computers 38(3): 2533-2554. Dresselhaus, M., G. Dresselhaus, R. Saito, 1995. Physics of carbon nanotubes. Carbon 33(7): 883-891. Dresselhaus, M. S., G. Dresselhaus, P. Eklund, A. Rao, 2000. Carbon nanotubes. The Physics of Fullerene-based and Fullerene-related Materials, Springer: 331-379. Fu, Y., J. Zhong, X. Shao, C. Tao, 2016. Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations. Mechanics of Advanced Materials and Structures 23(11): 1284-1289. García-Macías, E., R. Castro-Triguero, E. I. S. Flores, M. I. Friswell, R. Gallego, 2016. Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Composite Structures 140: 473-490. Guo, H., T. Sreekumar, T. Liu, M. Minus, S. Kumar, 2005. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 46(9): 3001-3005. Huang, Y., B. Karami, D. Shahsavari, A. Tounsi, 2021. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archives of Civil and Mechanical Engineering 21(4): 1-15. Iijima, S, 2002. Carbon nanotubes: past, present, and future. Physica B: Condensed Matter 323(1-4): 1-5. Liew, K. M., Z. Pan, L.-W. Zhang, 2020. The recent progress of functionally graded CNT reinforced composites and structures. Science China Physics, Mechanics & Astronomy 63(3): 1-17. Shen, H.-S., 2009. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures 91(1): 9-19. Zhang, L., 2017. On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Composite Structures 160: 824-837. Zhong, R., Q. Wang, J. Tang, C. Shuai, B. Qin, 2018. Vibration analysis of functionally graded carbon nanotube reinforced composites (FG CNTRC) circular, annular and sector plates. Composite Structures 194: 49-67.
Made with FlippingBook Annual report maker